Research Using Muons

24. February 2014

teaserbild.jpg

The proton accelerator at the Paul Scherrer Institute: forty years of top-flight research

Media Releases Large Scale Facilities Research Using Muons Research Using Neutrons Particle Physics Matter and Material

Materials research, particle physics, molecular biology, archaeology – for the last forty years, the Paul Scherrer Institute’s large-scale proton accelerator has made top-flight research possible in a number of different fields.


1. October 2013

teaserbild.jpg

The quest for an elusive white crow of particle physics

Research Using Muons Particle Physics

A very rare process in nature should best decide on how we should describe our universe in the future. It is the particular decay of a particular type of elementary particle: the muon. These particles are short-lived and decay into a variety of other particles. According to one theoretical model, a very particular decay process is practically forbidden, whereas according to another it should be allowed. Which theory is correct? By observing many hundreds of trillions of muon decays very precisely, physicists at the Paul Scherrer Institut have come a step closer to solving this puzzle. They have now published their results in the journal Physical Review Letters.

17. May 2013

teaserbild.jpg

Experiments in millionths of a second

Matter and Material Large Scale Facilities Research Using Muons

Muons – unstable elementary particles – provide scientists with important insights into the structure of matter. They provide information about processes in modern materials, about the properties of elementary particles and the nature of our physical world. Many muon experiments are only possible at the Paul Scherrer Institute because of the unique intense muon beams available here.

25. January 2013

teaserbild.jpg

Proton size puzzle reinforced!

Media Releases Particle Physics Research Using Muons Large Scale Facilities Matter and Material

An international team of scientists confirmed the surprisingly small value of the proton radius with laser spectroscopy of exotic hydrogen. The experiments were carried out at PSI which is the only research institute in the world providing the necessary amount of muons for the production of the exotic hydrogen atoms made up of a muon and a proton.

7. January 2013

teaserbild.jpg

The weak side of the proton

Media Releases Matter and Material Research Using Muons Particle Physics

An international research team has determined with a high level of accuracy, how the proton participates in the weak interaction – one of the fundamental forces of nature. Their results confirm the predictions of the Standard Model of particle physics. The experiment observed the probability of muon capture by protons – a process governed by the weak interaction. The experiment was conducted at the Paul Scherrer Institute, the only institute in the world with an accelerator capable of generating enough muons for carrying out this project in a realistic timeframe.

23. November 2011

teaserbild.jpg

Erkenntnis aus dem Nichts

Media Releases Matter and Material Particle Physics Research Using Muons

Zwei Experimente mit massgeblicher Beteiligung von Forschern des Paul Scherrer Instituts PSI liefern wichtige Ergebnisse bei der Suche nach der richtigen Beschreibung der Welt der kleinsten Teilchen. In den Experimenten haben die Physiker nach sehr seltenen Teilchenzerfällen gesucht. In beiden Fällen konnte der gesuchte Zerfall nicht beobachtet werden wodurch bestimmte Modelle der Teilchenphysik ausgeschlossen werden konnten.
This news release is only available in German.

20. May 2011

teaserbild.jpg

Der Unterschied zwischen dünn und sehr dünn

Media Releases Matter and Material Research Using Muons Materials Research

Materialforschung in neuer Dimension

Viele Materialien haben eine spezielle kristalline Struktur – ihre Atome sind übereinander in Schichten angeordnet. Ein deutsch-schweizerisches Forscherteam hat zum ersten Mal präzise beobachtet, wie die physikalischen Eigenschaften einer Substanz von der Zahl dieser Schichten abhängen. Dass sich die physikalischen Charakteristika nun auch auf diese Weise kontrollieren lassen, eröffnet neue Möglichkeiten, Stoffe zu identifizieren, aus denen die Computerchips der Zukunft gemacht sein könnten.
This news release is only available in French and German.

25. January 2011

teaserbild.jpg

How strong is the weak force?

Media Releases Matter and Material Research Using Muons Particle Physics

A new measurement of the muon lifetime – the most precise determination of any lifetime – provides a high-accuracy value for a crucial parameter determining the strength of weak nuclear force. The experiments were performed by an international research team at the accelerator facility of the Paul Scherrer Institute.

13. December 2010

teaserbild.jpg

In the future: processing and memory on a single chip

Media Releases Matter and Material Materials Research Research Using Muons

Researchers have shown that a magnetically polarised current can be manipulated by electric fields. This important discovery opens up the prospect of simultaneously processing and storing data on electrons held in the molecular structure of computer chips – combining computer memory and processing power on the same chip. This may allow for the development of new devices with high power efficiency and reduced weight.

8. July 2010

teaserbild tn.jpg

Protons – smaller than we thought

Media Releases Matter and Material Research Using Muons Particle Physics

The proton – one of the smallest building-blocks of all matter – is even smaller than had previously been assumed. This discovery is the result of experiments carried out at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, by an international research team.

1. December 2009

Luetkens 0005 tn.jpg

The SμS muon source

Research Using Muons Matter and Material Large Scale Facilities

Along its path, the beam first strikes one target, then the second, and then moves on to the lead target of the SINQ neutron source. Muons are generated by the collisions of protons with the carbon nuclei in the first two targets. PSI operates two muon targets because a single one could not supply enough muons for all the experiments being performed. The muons are guided with the aid of magnets to the individual measuring stations, of which there are currently six for experiments in solid-state physics using muons.

1. December 2009

bi2005m03 0014 0001 di v tn.jpg

The PSI proton accelerator

Matter and Material Research Using Synchrotron Light Research Using Neutrons Research Using Muons Large Scale Facilities Particle Physics

The neutrons and muons used for experiments at PSI are all produced by a beam of fast protons colliding with a target – made of lead in the case of the SINQ neutron source and of carbon in the case of the SμS muon source. For that purpose, the protons are accelerated to 80% of the speed of light at PSI's accelerator facility. The facility has been in operation since 1974. After numerous improvements, it provides the most intense proton beam in the world.

1. December 2009

psi 17032009 fff 0037 tn.jpg

Service to the scientific community

Matter and Material Research Using Synchrotron Light Research Using Muons Research Using Neutrons Large Scale Facilities Particle Physics

Neutrons, synchrotron light and muons are very useful for researchers in a variety of disciplines. Using these “probes”, we can determine the structure of crystals, they help us understand magnetic processes, or they can reveal the structures of biological materials. However, producing these probes is so difficult that most research groups will not have a neutron, muon or synchrotron light at their own scientific centre.

1. December 2009

Myonen 018 tn.jpg

Research with Muons

Matter and Material Research Using Muons

Muons are unstable elementary particles that can be used to determine magnetic fields inside solids. Muons are mainly applied in research into high temperature superconductors and magnetic materials. Muons for solid state research are only available at two sites in Europe: one at the PSI, the other in the UK. The experimental opportunities provided with slow muons, provided by PSI, are unique in the world.

23. February 2009

MM Luetkens Fig3 tn.jpg

Entsteht Supraleitung doch ganz anders?

Media Releases Matter and Material Materials Research Research Using Muons

Publikation in “Nature Materials”. Ergebnisse vom Paul Scherrer Institut stellen gängige Theorien der Hochtemperatursupraleitung in Frage.
This news release is only available in German.

24. November 2008

Myonen 018 tn.jpg

Was beim Computer im Kopf vorgeht

Media Releases Matter and Material Materials Research Research Using Muons

Publikation in der Online-Ausgabe von “Nature”. Ein Forscherteam unter der Leitung von Alan Drew (Univ. Freiburg, Schweiz und Queen Mary College, London, England) und Elvezio Morenzoni (Paul Scherrer Institut, Villigen, Schweiz) hat als erstes im Detail die magnetischen Vorgänge in einem Lesekopf – ähnlich dem, der Daten von der Festplatte eines Computers liest – verfolgt.
This news release is only available in French and German.

Media corner

Information and contacts for media representatives

psi forum

The visitors' centre of the Paul Scherrer Institute

The iLab School Laboratory

Experience Science - Explore Research

Follow the PSI