

PAUL SCHERRER INSTITUT

Jochen Stahn

Tobias Panzner Uwe Filges Emanouela Rantsiou Ursula B. Hansen

a truly focusing neutron guide

Selene

International Workshop on Neutron Optics and Detectors 02.–05. 07. 2013, Munich (Ismaning), Germany

Selene picture: ceiling painting in the Ny Carlsberg Glyptotek, København

 \circ Selene guide system

 \circ prototype

• optics & options

• reflectometry

• discussion

people.web.psi.ch/stahn/publications.html#oral

motivation

losses along the beam path at Amor for a 1 cm^2 sample:

can we improve this?

motivation

losses along the beam path at Amor for a 1 cm^2 sample:

can we improve this?

• focusing in the sample plane

motivation

losses along the beam path at Amor for a 1 cm^2 sample:

can we improve this?

- \circ focusing in the sample plane
- new measurement schemes

e.g. high-intensity specular reflectometry

F. Ott, et al.: NIM A 586, 23 (2008)

 \Rightarrow 99.8% of the delivered beam is not wanted!

so: why deliver it?

• prototype

 \circ optics & options

• reflectometry

 \circ discussion

generic lay-out

comparison to conventional and full elliptic guides

comparison to a straight guide

chromatic aberration due to gravity

simulations (McStas) with (1mm) tapered guides (40 m long, b/a = 0.022)

in agreement with analytical calculations

• Selene guide system

• prototype

• optics & options

• reflectometry

 \circ discussion

guides

by SwissNeutronics

2 guides 1200 mm each,

made of 2 elements,

made of

2 elliptically bent reflectors. coating: Ni/Ti SM, m = 4

 $a = 1000 \,\mathrm{mm}$ b/a = 0.0206

set-up realised several times

on the optical bench BOA@PSI

on the TOF reflectometer $\ensuremath{\mathsf{Amor}@\mathsf{PSI}}$

 \rightarrow details, optics and measurements on the following slides

quality characterisation with pin-hole

using light & CCD camera, or neutrons

quality characterisation with pin-hole

using light & CCD camera, or neutrons

quality characterisation with pin-hole

using light & CCD camera, or neutrons

• Selene guide system

• prototype

• optics & options

• reflectometry

 \circ discussion

requested:

a surface hit by all trajectories from a point source at the same angle $\boldsymbol{\alpha}$

polariser

requested:

a surface hit by all trajectories from a point source at the same angle $\boldsymbol{\alpha}$

 \Rightarrow the logarithmic spiral

polariser: logarithmic spiral

J. Stahn: Selene guide, NOP&D 2013 4.1

MIEZE (NRSE) compatibility with *Selene* guide under investigation all trajectories have the same length

G. Brandl, A. Chacón, R. Georgii, W. Häußler, et al. FRM II & TU Munich

• Selene guide system

• prototype

• optics & options

• reflectometry

 \circ discussion

high-intensity specular reflectivity

sample by Birgit Wiedemann TU Munich

sample by SwissNeutronics

high-intensity specular reflectivity

high-intensity specular reflectivity

high-intensity specular reflectivity

 $\log_{10} R(q_Z)$

• Selene guide system

• prototype

• optics & options

• reflectometry

• discussion

general limits of Selene guides

- \circ max. spot-size / guide-length $\approx 5\cdot 10^{-4}$ i.e. 1 cm / 20 m
- $\circ~$ gravity gets important for large guide \times wavelengths ~ e.g. 40 m \times 10 Å ~
- finite reflectivity / m

technical limits (to be pushed)

- guide assembly and alignment
- ground settling

successes

- + guide quality sufficient for high-intensity and conventional reflectometry
- + successfully applied to real samples

 $\Delta \theta / \lambda < 0.6 \, \text{deg} / \text{\AA}$

focusing results in:

no gain in brilliance

defined footprint clean beam homogeneous uni-modal angular or spatial distribution

non-perfect optics

 \Rightarrow reduction of resolution / transmission

works best for small samples

weak aberration

J. Stahn: Selene guide, NOP&D 2013 6.3

appendix

dimensions are freely scalable

- \Rightarrow adjustable to $~\circ~$ TOF length
 - sample environment
 - spin-echo spatial needs
 - available space

o ...

limited by o aberration o gravity quality characterisation by interferometry:

ZYGO Verifire ATZ metrology-lab @ PSI

parallel beam normal to the surface

quality characterisation by interferometry:

ZYGO Verifire ATZ metrology-lab @ PSI

focused beam

ZYGO Verifire ATZ metrology-lab @ PSI

focused beam fed into guide

not yet analysed

light optics not adapted \Rightarrow low intensity

condenser: parabolic deflector to generate a parallel beam

parabola axis \Rightarrow beam direction

focal length \Rightarrow beam width

beam width & spot size \Rightarrow divergence

no collimator needed tunable

(not yet realised)

spectral analysis

using a multilayer monochromator

double ML monochromator

3D footprint definition using the imaging property of the *Selene* guide

point source \Rightarrow illuminates sample centre

source

sample

3D footprint definition using the imaging property of the *Selene* guide

point source \Rightarrow illuminates sample centre

finite sample \Rightarrow needs finite source

source

sample

3D footprint definition using the imaging property of the *Selene* guide

- point source \Rightarrow illuminates sample centre
- finite sample \Rightarrow needs finite source
- source shape & orientation = image of footprint

3D footprint definition using the imaging propertiy of the Selene guide

point source \Rightarrow illuminates sample centre

finite sample \Rightarrow needs finite source

source shape & orientation = image of footprint

3D footprint definition using the imaging property of the Selene guide

applications:

- exclude sample holder, etc.
- concentrate on one crystallite

- \circ $\,$ inner region within a trough
- inner region of a solid-liquid cell:
- samples with electrical contacts:
- partially coated substrates
- bent substrates

choppers

 $v = 60 \,\text{s}^{-1}$ gives $\lambda = 0 \dots 10 \,\text{\AA}$

 $\varnothing = 150 \, \text{mm}$

AI:B and Cd absorber

- frame-overlap suppression
- pulse generation

why?

• samples are *small* in at least one direction (\ll 10 mm)

- typically $\lambda > 3 \text{ Å}$
- large dynamic range requires a low background no illumination of sample environment

 $\Delta \theta$

 q_Z

 q_Z

X

- \bullet reflectometry can profit from \circ large $\Delta \theta$
 - $\circ \lambda$ - θ encoding
 - \circ changing θ without rotating the sample

Δθ

θ

• it's my area of interest

high-intensity specular reflectometry

VS.

almost conventional

off-specular incoherent

θ

θ

absolute error of 0