

Paul Scherrer Institut

Tobias Panzner, Uwe Filges, Panos Korelis



Københavns Universitet

Marité Cardenas Ursula Hansen

Syddansk Universitet

Beate Klösgen

progress report of the Swiss-Danish instrument initiative for the ESS WP2

focusing reflectometer

IKON 3 19.–20. 09. 2012, Lund, Sweden



Selene

#### aims

#### Selene BOA



**development and proof of concepts** for two reflectometers for the ESS, optimised for:

- small samples (< 100 mm<sup>2</sup>)
  - horizontal scattering geometry
  - polarisation &  $\sim analysis$
  - voluminous sample environment
  - moderate to low resolution

— . . .

# • lice surfaces

- liquid surfaces
  - vertical scattering geometry
  - time-resolved studies ( $\Delta t < 1 \, \mathrm{s}$ )
  - wide  $q_z$ -range with one (few) angular setting(s)
  - high to low resolution

— . . .

## state of work

Selene BOA

## prototype

- on schedule
- additional beam time on Amor necessary (limitations on BOA)



- concept has to be confined to actual ESS details
- simulation delayed due to lack of manpower



- concept has to be confined to actual ESS details
  - simulations in progress
  - benchmarks planed for the near future

#### principle



# generic instrument layout

cut in the scattering plane stretched by 10 normal to incident beam





## Selene BOA

## choppers

$$\label{eq:sigma} \begin{split} \nu &= 60\,\text{s}^{-1} \\ \text{gives } \lambda &= 0\dots 10\,\text{\AA} \end{split}$$

 $arnothing = 150\,\text{mm}$ 

AI:B and Cd absorber

- mimic ESS pulse
- frame-overlap filter



#### Selene BOA

**ML** monochromator





## Selene BOA

# guides

by SwissNeutronics

2 guides 1200 mm each

made of

2 elements

made of 2 elliptically bent reflectors coating: Ni/Ti SM, m = 4

 $a = 1000 \,\mathrm{mm}$ b/a = 0.0206





2.4

#### Selene BOA

#### beam divergence

measured in TOF with a pin-hole

bender  $\Rightarrow$  stripe pattern anti-trumped  $\Rightarrow$  # shadow inhomogeneous  $I(\lambda)$ 

 $\log I(\theta_y, \theta_z)$ 

 $\log I(\theta_y, \lambda)$ 



Selene BOA

#### beam reflected on supermirror

Ni/Ti, m = 5

diagonal line in log  $I(\theta_y, \theta_z)$  : joint between horizontal and vertical reflectors

 $\log I(\theta_y, \theta_z)$ 

 $\log I(\theta_V, \lambda)$ 



#### Selene BOA

# beam reflected by Ni film

1000 Å on glass



 $\log I(\theta_y, \theta_z)$ 

 $\log I(\theta_y, \lambda)$ 



#### Selene BOA

## beam reflected by Ni film

1000 Å on glass normalised with SM

each horizontal line corresponds to one  $R(q_z)$  curve

 $\log I(\theta_y, q_z)$ 





0 1.4 -1 1.2 1 -2 0.8 -3 0.6 0.4 -4 أأقاد فراد بالسلا والأبار 0.2 -5 0 10 6 8 9 3 5 7

 $\lambda/Å$ 

Selene BOA



- proof of measurement scheme
- $\circ \Delta \lambda = \text{const.!}$
- o source needs to be homogeneous!
- background at BOA is too high  $(10^{-2})$
- $\circ$  guide accuracy has to be improved

#### Selene BOA

next steps:

- remeasure with diffusor
- check set-up with ML monochromator

- testing with optical light
- TOF and ML-monochromator (on Amor, date unclear)

ESSSelene small samples

sample area  $1\times1$  to  $10\times10\,mm^2$ 

polarisation & analysis

resolution  $\Delta q_Z/q_Z = \text{const.} = 4\% \dots 15\%$ 

 $\lambda$ -range: 5 Å ... 9.4 Å

instrument length: 58 m



 $\begin{array}{ll} q_{Z} \text{-ranges:} & 0.01 \, \text{\AA}^{-1} \rightarrow 0.08 \, \text{\AA}^{-1} \\ & 0.07 \, \text{\AA}^{-1} \rightarrow 0.19 \, \text{\AA}^{-1} \\ & 0.18 \, \text{\AA}^{-1} \rightarrow 0.38 \, \text{\AA}^{-1} \\ & 0.37 \, \text{\AA}^{-1} \rightarrow 0.72 \, \text{\AA}^{-1} \end{array}$ 





version II

## two Selene guide sections

 $\lambda/\theta$  encoding ML-monochromator at x = 28 m

 $\Delta \theta_{XY} = 1.5^{\circ}$  $\Delta \theta_{XZ} = 1.5^{\circ}$ 

problem:

lower transmission







 $\rightarrow$  Ursula Hansen

# questions / discussion

- constraints due to shielding **STAP** recommendations • constraints due to  $\gamma$  & n-burst • spatial situation  $5^{\circ}$  wedge moderator Be-reflector moderator? • detector / choppers support from ESS? benchmarking reference instrument at ESS to be defined existing instrument(s)
- $\circ$  one person (at ESS / København) doing the final benchmarking