

Paul Scherrer Institut

Jochen Stahn Tobias Panzner, Uwe Filges

Københavns Universitet Syddansk Universitet

Marité Cardenas

Beate Klösgen

progress report of the Swiss-Danish instrument initiative for the ESS WP2

focusing reflectometer

IKON 2 09.–10. 02. 2012, Malmø, Sweden

Selene

aims

development and proof of concepts for two reflectometers for the ESS, optimized for:

- small samples (< 1 mm²)
 - horizontal scattering geometry
 - polarization & \sim analysis
 - voluminous sample environment
 - moderate to low resolution
 - . . .

• liquid surfaces

- vertical scattering geometry
- time-resolved studies ($\Delta t < 1 \, s$)
- wide q_z -range with one (few) angular setting(s)
- high to low resolution

generic instrument layout

cut in the scattering plane stretched by 10 normal to incident beam

generic instrument

generic instrument

why an elliptic reflector?

```
an elliptic reflector allows for
point-to-point focusing
      small source point
            convenient beam manipulation (chopper, filtering)
            early beam definition
                  low background
                  low radiation
      disentangling of spot size and divergence
```

→ λ/θ encoding

a parabolic reflector turns beam size into divergence and vice versa

generic instrument

why only one branch of an ellipse?

• no structured $I(\theta, z)$

• in most cases one branch can cover $\Delta \theta$

generic layout

why two subsequent elliptic guides?

- convenient beam manipulation
- guide dimensions not too large
- correction for coma aberration!

for TOF

(non-TOF operation is also possible!)

almost conventional

- beam is still convergent
- off-specular measurements are feasible

wide *q*-range

- \bullet vary θ with fixed sample position
- shift diaphragm (chopper) between pulses

• suited for liquid surfaces

small spot size

- uses focusing due to coma aberration
- scanning mode possible

I(y,z) and $I(z,\theta_z)$ at the sample for a $1 \times 1 \text{ mm}^2$ entrance slit

angle/energy encoding

- uses a ml-monochromator at the intermediate image
- spectral analysis of the beam: λ / θ encoding

high-intensity specular reflectivity

- \bullet energy- and angle-dispersive \Rightarrow gain >10
- for fast scanning (T, H, E...)
- or if off-specular scattering is no *problem*

high-intensity specular reflectivity vs. almost conventional

high-intensity specular reflectivity vs. almost conventional

 $[La_{2/3}Sr_{1/3}MnO_3/SrTiO_3]_4/NGO \qquad 4 \times 5 \,mm^2$

- no focusing in sample plane
- TOF mode, $\lambda \in [2 \dots 18 \text{ Å}]$

prototype on BOA

concept for the ESS

schematic lay-out of the reflectometer for tiny samples

concept for the ESS

schedule

Selene is a guide concept

which ...

- prevents direct line of sight
 - reduces radiation in the guide
 - allows for convenient beam manipulation

- reduces illumination of the sample environment
 - allows for a convergent beam set-up
 - \Rightarrow flux gain > 10