XPS 2s.jpg

Electrocatalysis and Interfaces

Project Description

The Electrocatalysis and Interfaces Group was established in 2012 combining the electrocatalysis activites of the former Fuel Cell Group and the Interface analytical activities of the former Interface and Capacitor Group.
Electrocatalysis is the key topic for electrochemical energy conversion. In order to optimize rate, selectivity, energy and stability of a certain electrochemical reaction - such as oxygen reduction, oxygen evolution, hydrogen oxidation, and CO2 reduction - proper catalysts have to be developed and optimized. The respective surface and interface analytical tools are essential for the understanding of the catalyst and are utilized in the group.

Therefore the activities of the group cover two focal points - Electrocatalysis and Interface analysis including Electrochemical capacitors.

Electrocatalysis - opens new routes towards more efficient fuel cells and other electrochemical processes e.g. CO2 reduction. The group's main topics are investigations of the effect and utilization of oxides as support for O2 reduction catalysts and the optimization of CO2 reduction catalysts. Catalysts for electrolysis and reversible fuel cells are also studied in our group.

Interfaces - Surface analysis is essential for the understanding and optimization of catalytic and electrochemical interfaces and provides information about processes and electronic and molecular properties on a microscopic scale. The main topics at present are catalysis of nano particles and electrocatalysis. We also developed in situ UHV electrochemical cells for in situ studies of the electrolyte|electrode interface, in particular the ionic liquid | electrode interface.

Research on Capacitors, which continued to exist since 1995, concerned exclusively supercapacitors (electrochemical double layer capacitors utilizing very high surface area carbons) as high power electrochemical storage devices. This research activity has been abandoned 2014 in the favour of intensified catalysis research.

In addition we provide support for customers within and outside PSI.

↑ Top

Research Team

  • Thomas J. Schmidt, head
  • Tobias Binninger
  • Xi Cheng
  • Emiliana Fabbri
  • Anja Habereder
  • Mehtap Özaslan
  • Yohan Paratcha
  • Alexandra Pătru
  • Annett Rabis
  • Susan Taylor
  • Sandra Temmel (jointly with Materials Group)
  • Simon Tschupp (jointly with LMN)
  • Kay Waltar
↑ Top

Former Group Members

Rüdiger Kötz 1989 - 2014 Elsevier
Moritz Hantel 2010 - 2013 SABIC
Daniel Weingarth 2010 - 2013 INM Leibniz Institute for New Materials
Jorge Ferreira de Araújo 2012 - 2013 Technische Universität Berlin
Annette Foelske-Schmitz 2004 - 2013 Technische Universität Wien
Paramaconi Rodriguez 2011 - 2012 University of Birmingham
Yuri Sasaki 2010 - 2011 Toyota Central R&D Laboratories, Inc.
Anastasia Peitz 2008 - 2011 ABB Schweiz AG, Micafil, Klingnau
Dario Cericola 2008 - 2011 TIMCAL Ltd, Bodio
Patrick Ruch 2005 - 2009 IBM Research Lab. Zürich
Jörg Wambach 2007 - 2009 LBK (PSI)
François Loviat 2007 - 2008 Sulzer Ltd
Jean-Claude Sauter 2001 - 2007 RUAG Aerospace
Matthias Hahn 1999 - 2007 EL-Cell GmbH
Olivier Barbieri 2003 - 2006 Applied Materials
Flavio Campana 2001 - 2005 Cendres+Métaux SA
Carolin Stoessel-Sittig 2002 - 2004  
Bernhard Schnyder 1991 - 2004 Micro Crystal, Div. of ETA SA
Martin Baertschi 1999 - 2001  
Martin Baertsch 1995 - 2001  
Dario Aliatta 1997 - 2000 Rudolph Technologies
Artur Braun 1996 - 1999 EMPA
Pascal Haering 1994 - 1998 Renata SA
Melanie Sullivan 1992 - 1996  
Rainer Michaelis 1993 - 1995 Praxis für Musik-/Klangtherapie
Cesar Barbero 1989 - 1994 Universidad Nacional de Rio Cuarto
Maria C. Miras 1989 - 1994 Universidad Nacional de Rio Cuarto
↑ Top

Publications (2014-2012)

For previous publications see Publications Annual


  • Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction E. Fabbri, A. Habereder, K. Waltar, R. Kötz and T. J. Schmidt
    Catal. Sci. Technol., 2014
    DOI: 10.1039/c4cy00669kOG-5423
  • Carbon additives for electrical double layer capacitor electrodes D. Weingarth, D. Cericola, F.C.F. Mornaghini, T. Hucke, R. Kötz
    J. Power Sources 266, 475–480 (2014)
    DOI: 10.1016/j.jpowsour.2014.05.065OG-5423
  • Advanced Cathode Materials for Polymer Electrolyte Fuel Cells Based on Pt/Metal Oxides: From Model Electrodes to Catalyst Systems E. Fabbri, A. Patru, A. Rabis, R. Kötz, T.J. Schmidt
    Chimia 68, 217–220 (2014)
    DOI: 10.2533/chimia.2014.217OG-5423
  • _In-situ_ XRD and dilatometry investigation of the formation of pillared graphene via electrochemical activation of partially reduced graphite oxide M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz
    Electrochimica Acta 134, 459-470 (2014)
    DOI: 10.1016/j.electacta.2014.04.063OG-5423
  • Composite Electrode Boosts the Activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite and Carbon toward Oxygen Reduction in Alkaline Media E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
    ACS Catal., 2014, 4 (4), pp 1061–1070
    DOI: 10.1021/cs400903kOG-5423
  • Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues E. Fabbri, A. Rabis, R. Kötz, T.J. Schmidt
    Phys. Chem. Chem. Phys. 16, 13672-13681 (2014)
    DOI: 10.1039/c4cp00238eOG-5423
  • The Effect of Platinum Nanoparticle Distribution on Oxygen Electroreduction Activity and Selectivity E. Fabbri, S. Taylor, A. Rabis, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
    ChemCatChem 6 (5), 1410–1418 (2014)
    DOI: 10.1002/cctc.201300987OG-5423
  • Determination of the electrochemically active surface area of metal-oxide Supported Platinum Catalyst T. Binninger, E. Fabbri, R. Kötz, T. J. Schmidt
    J. Electrochem. Soc. 161 (3), H121-H128 (2014).
    DOI: 10.1149/2.055403jesOG-5423
  • Ba0.5Sr0.5Co0.8Fe0.2O3-d Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
    ChemElectroChem 1 (2), 338-342 (2014)
    DOI: 10.1002/celc.201300157OG-5423
  • Parameters determining dimensional changes of porous carbons during capacitive charging M.M. Hantel, D. Weingarth, R. Kötz
    Carbon 69, 275-286 (2014).
    DOI: 10.1016/j.carbon.2013.12.026OG-5423
  • Platinum-Based Cathode Catalysts for Polymer Electrolyte Fuel Cells E. Fabbri, T.J. Schmidt
    Encyclopedia of Applied Electrochemistry, Springer Science + Business Media LLC, New York, R.F. Savinell, K. Ota, G, Krysa (Eds.), (2013).
    DOI: 10.1007/SpringerReference_303661OG-5423
  • Platinum-Based Anode Catalysts for Polymer Electrolyte Fuel Cells P. Rodriguez, T.J. Schmidt
    Encyclopedia of Applied Electrochemistry, Springer Science + Business Media LLC, New York, R.F. Savinell, K. Ota, G, Krysa (Eds.), (2013).
    DOI: 10.1007/SpringerReference_303660OG-5423
  • A comparative study of cathodic electrodeposited nickel hydroxide films electrocatalysts R. Amadelli, S. Ferro, S. Barison, R. Kötz, B. Schnyder, A.B. Velichenko
    Electrocatalysis 4, Issue 4, 329-337 (2013).
    DOI: 10.1007/s12678-013-0154-1OG-5423
  • Bimetallic aerogels: High-Performance electrocatalysts for the oxygen reduction reaction W. Liu, P. Rodriguez, L. Borchardt, A. Foelske, J. Yuan, A.-K. Herrmann, D. Geiger, Z. Zheng, S. Kaskel, N. Gaponik, R. Kötz, T.J. Schmidt, A. Eychmüller
    Angew. Chem. Int. Ed. 52, 9849-9852 (2013).
    DOI: 10.1002/anie.201303109OG-5423
  • Anisometric charge dependent swelling of porous carbon in an ionic liquid F. Kaasik, T. Tamm, M.M. Hantel, E. Perre, A. Aabloo, E. Lust, M.Z. Bazant, V. Presser
    Electrochem. Commun. 34, 196-199 (2013).
    DOI: 10.1016/j.elecom.2013.06.011OG-5423
  • Persistent electrochemical pillaring of graphene ensembles M.M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz
    Electrochem. Commun. 34, 189-191 (2013).
    DOI: 10.1016/j.elecom.2013.06.007OG-5423
  • Durable oxide-based catalysts for application as cathode materials in polymer electrolyte fuel cells (PEFCs) A. Rabis, E. Fabbri, A. Foelske, M. Horisberger, R. Kötz, T.J. Schmidt
    ECS Trans. 50 (36), 9-17 (2013).
    DOI: 10.1149/05036.0009ecstOG-5423
  • A reliable determination method of stability limits for electrochemical double layer capacitors D. Weingarth, H. Noh, A. Foelske-Schmitz, A. Wokaun, R. Kötz
    Electrochim. Acta 103, 119-124 (2013).
    DOI: 10.1016/j.electacta.2013.04.057OG-5423
  • Investigation of diluted ionic liquid 1-ethyl-3-methyl imidazolium tetrafluoroborate electrolytes for intercalation-like electrodes used in supercapacitors M.M. Hantel, A. Płatek, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz
    Electrochim. Acta 110, 234-239 (2013).
    DOI: 10.1016/j.electacta.2013.04.032OG-5423
  • PTFE bound activated carbon – a quasi reference electrode for ionic liquids and its application D. Weingarth, A. Foelske-Schmitz, A. Wokaun, R. Kötz
    ECS Trans. 50 (11), 111-117 (2013).
    DOI: 10.1149/05011.0111ecstOG-5423
  • Partially reduced graphene oxide paper: A thin film electrode for electrochemical capacitors M.M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz
    J. Electrochem. Soc. 160 (4), A747-A750 (2013).
    DOI: 10.1149/2.019306jesOG-5423
  • Core level data of ionic liquids: Monitoring charging by in situ electrochemical X-ray photoelectron spectroscopy A. Foelske-Schmitz, D. Weingarth, A. Wokaun, R. Kötz
    ECS Electrochemistry Letters 2 (4), H13-H15 (2013).
    DOI: 10.1149/2.002304eelOG-5423
  • Cycle versus voltage hold - Which is the better stability test for electrochemical double layer capacitors? D. Weingarth, A. Foelske-Schmitz, R. Kötz
    J. Power Sources 225, 84-88 (2013).
    DOI: 10.1016/j.jpowsour.2012.10.019OG-5423
  • Electrocatalysis for PEFCs: Oxygen reduction on nanoparticles and extended surfaces T.J. Schmidt, A. Rabis, B. Schwanitz, G.G. Scherer
    Mater. Res. Soc. Symp. Proc. 1491 (2013).
    DOI: 10.1557/opl.2012.1738OG-5423
  • Narrowly dispersed silica supported osmium nanoparticles prepared by an organometallic approach: H2 and CO adsorption stoichiometry and hydrogenolysis catalytic activity J.E. Low, A. Foelske-Schmitz, F. Krumeich, M. Wörle, D. Baudouin, F. Rascón, Ch. Copéret
    Dalton Trans. 42, 12620-12625 (2013).
    DOI: 10.1039/c3dt50980jOG-5423
  • In-situ electrochemical dilatometry of onion-like carbon and carbon black M. M. Hantel, V. Presser, J. K. McDonough, G. Feng, P. T. Cummings, Y. Gogotsi, and R. Kötz
    Journal of the Electrochemical Society (2012) Vol. 159, Issue 11, Pages A1897-A1903
    DOI: 10.1149/2.006212jesOG-5423
  • In situ electrochemical STM study of platinum nanodot arrays on highly oriented pyrolythic graphite prepared by electron beam lithography A. Foelske-Schmitz, A. Peitz, V.A. Guzenko, D. Weingarth, G.G. Scherer, A. Wokaun, R. Kötz
    Surface Science 606 (2012) 1922-1933
    DOI: 10.1016/j.susc.2012.07.040OG-5423
  • A Novel Model Electrode for Investigating Ion Transport inside Pores in an Electrical Double-Layer Capacitor: Monodispered Microporous Starburst Carbon Spheres Yuri Yamada, Tsuyoshi Sasaki, Narihito Tatsuda, Daniel Weingarth, Kazuhisa Yano, and Rüdiger Kötz
    Electrochimica Acta 81 (2012) 138– 148
    DOI: 10.1016/j.electacta.2012.07.064OG-5423
  • Partially reduced graphite oxide as anode for Li-Capacitors M.M. Hantel, T. Kaspar, R. Nesper, A. Wokaun and R. Kötz
    ECS Electrochemistry Letters Volume 1, Issue 1 (2012) A1-A3
    DOI: 10.1149/2.005201eelOG-5423
  • Electrochemical stability of imidazolium based ionic liquids containing cyano groups in the anion: A cyclic voltammetry, XPS and DFT study D. Weingarth, I. Czekaj, Z. Fei, A. Foelske-Schmitz, P.J. Dyson, A. Wokaun and R. Kötz
    Journal of the Electrochemical Society 159 (7) (2012) H611-H615
    DOI: 10.1149/2.001207jesOG-5423
  • Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges Annett Rabis, Paramaconi Rodriguez, and Thomas J. Schmidt
    ACS Catalysis 2012, 2, 864-890
    DOI: 10.1021/cs3000864OG-5423
  • Partially reduced graphite oxide as electrode material for electrochemical double layer capacitors Moritz. M. Hantel, Tommy Kaspar, Reinhard Nesper, Alexander Wokaun, Rüdiger Kötz
    Chemistry European Journal (2012) Volume 18, Issue 29, pages 9125–9136
    DOI: 10.1002/chem.201200702OG-5423
  • Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits. D. Cericola, R. Kötz
    Electrochimica Acta, 72 (2012) 1-17
    DOI: 10.1016/j.electacta.2012.03.151OG-5423
  • Sputtered Cathodes for Polymer Electrolyte Fuel Cells: Insights into Potentials, Challenges and Limitations Bernhard Schwanitz, Annett Rabis, Michael Horisberger, Günther G. Scherer, and Thomas J. Schmidt
    Chimia 66 (2012) 110–119
    DOI: 10.2533/chimia.2012.110OG-5423
  • PTFE bound activated carbon - A quasi-reference electrode for ionic liquids. D. Weingarth, A. Foelske-Schmitz, A. Wokaun, R. Kötz
    Electrochemistry Communications 18 (2012) 116–118
    DOI: 10.1016/j.elecom.2012.02.040OG-5423
  • Novel Electrolytes for Electrochemical Double Layer Capacitors based on 1,1,1,3,3,3-Hexafluoroisopropanol. R. Francke, D. Cericola, R. Kötz, D. Weingarth, S.R. Waldvogel
    Electrochimica Acta 62 (2012) 372-380
    DOI: 10.1016/j.electacta.2011.12.050OG-5423
  • Azolylborates for Electrochemical Double Layer Capacitor Electrolytes. R. Francke, D. Cericola, R. Kötz and S. R. Waldvogel
    Zeitschrift für Physikalische Chemie 226 (2012) 141-149
    DOI: 10.1524/zpch.2012.0174OG-5423
  • Electrocatalysis in Polymer Electrolyte Fuel Cells: From Fundamentals to
    Applications
    T.J. Schmidt
    ECS Trans. 2012 volume 45, issue 2, 3-14
    DOI: 10.1149/1.3701964OG-5423
↑ Top

Contact

Group Head
Prof. Thomas J. Schmidt
Paul Scherrer Institut
CH-5232 Villigen PSI
Switzerland

Phone: +41 56 310 57 65
Fax: +41 56 310 44 15
E-mail: thomasjustus.schmidt@psi.ch

Secretary
Cordelia Gloor
Phone: +41 56 310 29 19
E-mail: cordelia.gloor@psi.ch