

Physics motivation

Charged lepton flavor violation (CLFV)

- LFV observed in neutrino mixing
- Charged LFV not yet observed
- μ decays are clean searches
 (only decay products v, e, γ)

Physics motivation

Charged lepton flavor violation (CLFV)

- LFV observed in neutrino mixing
- Charged LFV not yet observed
- μ decays are clean searches
 (only decay products v, e, γ)
- Sensitive to beyond SM loop & contact interactions

More information on CLFV searches: <u>Talk by Konrad Briggl</u> <u>- 22.2.2024</u> (tomorrow)

Physics motivation

Charged lepton flavor violation (CLFV)

- LFV observed in neutrino mixing
- Charged LFV not yet observed
- μ decays are clean searches
 (only decay products v, e, γ)
- Sensitive to **beyond SM** loop & contact interactions
- Current Limit of $\mu^+ \rightarrow e^+e^-e^+$: SINDRUM: BR < 1 x 10⁻¹²
- **Goal of Mu3e:** Improve limit by 3 to 4 orders to $< 10^{-15}$ ($< 10^{-16}$ in Phase II)

- High muon rate needed $\rightarrow 10^8 \,\mu$ decays/s
- DC surface muon beam at PSI (πE5 beam line)
 - Low momentum, 28 MeV/c
 - Muons stopped on target
 - Decay at rest

- High muon rate needed $\rightarrow 10^8 \,\mu$ decays/s
- DC surface muon beam at PSI (πE5 beam line)
 - Low momentum, 28 MeV/c
 - Muons stopped on target
 - Decay at rest
- Signal decay: $\mu \rightarrow eee$
 - Three prompt e^{+/-}
 - Common vertex
 - ΣE = m_µ
 - ο Σ**p = 0**

- **High muon rate** needed $\rightarrow 10^8 \,\mu$ decays/s
- DC surface muon beam at PSI (π E5 beam line)
 - Low momentum, 28 MeV/c 0
 - Muons stopped on target Ο
 - **Decay at rest** Ο
- Signal decay: µ→eee
 - Three prompt e^{+/-} 0
 - Common vertex Ο
 - ΣE = m... Ο
 - $\Sigma \mathbf{p} = 0$ Ο
- Main backgrounds:
 - Internal conversion Ο

16th Terascale Detector Workshop 2024

- **High muon rate** needed $\rightarrow 10^8 \,\mu$ decays/s
- DC surface muon beam at PSI (πE5 beam line)
 - Low momentum, 28 MeV/c
 - Muons stopped on target
 - Decay at rest
- Signal decay: $\mu \rightarrow eee$
 - Three prompt e^{+/-}
 - Common vertex
 - ΣE = m_{...}
 - Σ**p** = 0
- Main backgrounds:
 - Internal conversion
 - Accidental background

Michel $e^+ \& e^-$ from Bhabha or γ conversion

MuPix sensor

High-Voltage monolithic active pixel sensors (HV-MAPS)

- Monolithic: Detection and readout on the same chip
- In-pixel electronics
- Deep n-well diode
- Charge collection via drift (high voltage)
- Can be thinned to \leq 50 μ m

16th Terascale Detector Workshop 2024

Thomas Rudzki – Universität Heidelberg

Time and vertex resolution

- Fast detectors
- High granularity

High rate capability

Monolithic: Detection and readout on the same chip

High-Voltage monolithic active pixel sensors (HV-MAPS)

• In-pixel electronics

MuPix sensor

- Deep n-well diode
- Charge collection via drift (high voltage)
- Can be thinned to \leq 50 μ m

MuPix11

- Chip size: ~ 20 x 23 mm²
- Pixel size: 80 x 80 µm²
- time resolution < 20 ns
- Hit efficiency > 99 %

More details on MuPix: <u>Talk by H. Augustin -</u> <u>Terascale Workshop 2023</u>

Detector design

- 4x **pixel** tracking layers only **→** minimize material
- 1T magnetic field

16th Terascale Detector Workshop 2024

Dedicated Mu3e talk: Talk by Konrad Briggl -

22.2.2024 (tomorrow)

Recurl pixel lavers

Scintillator tiles

Thomas Rudzki – Universität Heidelberg

40 cm

Inner pixel lavers

Targe

Scintillating fibres

Detector design

E

20

- 4x **pixel** tracking layers only **→** minimize material
- 1T magnetic field
- Recurl pixel station to get optimal momentum resolution
- **Fast scintillating fiber and tile detectors** for optimal timing resolution

u Beam

Low mass pixel detector

Detector composition:

- High-density interconnect (HDI) + HV-MAPS (50 µm thin)
- HDI = Aluminium-based flexprints

Aluminium vs. Copper

Radiation lengths

 $X_0(Cu) = 12.86 \text{ g/cm}^2 \rightarrow 1.436 \text{ cm}$

Low mass pixel detector

From HDIs and sensor chips to a detector

- 1. MuPix chips are **qualified** in probe card
- 2. MuPix chips are aligned on assembly tool
- 3. MuPix chips are glued on the HDI and bonded to a ladder

Ladder

Manual MuPix probe card

Glue dots on a MuPix chip

spTAB connections from HDI to the MuPix chips

Low mass pixel detector

From HDIs and sensor chips to a detector

- 1. MuPix chips are **qualified** in probe card
- 2. MuPix chips are aligned on assembly tool
- 3. MuPix chips are glued on the HDI and bonded to a ladder
- 4. Ladders are glued to each other forming half-shell modules
- 5. 4 modules mounted as two barrel layers forming the vertex detector

Silicon heater mock-up module

Thomas Rudzki – Universität Heidelberg

Low mass coolant

- MuPix dissipates ~ 215 mW/cm²
- Active cooling is required

16th Terascale Detector Workshop 2024

16th Terascale Detector Workshop 2024

Thomas Rudzki – Universität Heidelberg

Low mass coolant \rightarrow Gaseous helium

- Naive idea: Air cooling like at <u>STAR PXL</u>
- But: Air is too much material!
- 1 m of air corresponds to ~ 0.33 % $X_0 \rightarrow$ equivalent to 3(!) more tracking layers
- Solution: Helium \Rightarrow 0.018 % X₀ per meter

"Building a low mass tracker is easy"

16th Terascale Detector Workshop 2024

flexprints (away from detector)

Contact density

- Electrical connections via **spTAB** (single point tape-automated bonding)
- Limited contact density due to minimum structure size

Thomas Rudzki – Universität Heidelberg

21

Contact density

- Electrical connections via **spTAB** (single point tape-automated bonding)
- Limited contact density due to minimum structure size
- Narrowest line width: 63 µm
- Electrical contacts:
 - Differential Clock (bus line) Ο
 - Differential Serial Input (bus line, communication to chip) Ο
 - 3x Differential Data Out lines per chip 0
 - LV (VDD & GND) Ο
 - HV Ο
- Sensor is operated with a single supply voltage

spTAB connections from HDI to the MuPix chips

Integration of services

- Extremely dense detector integration
- Central station services need to **fit below recurl stations**
- Shared volume for services of Vertex detector, SciFi detector, Tile detector and Outer pixel layers
 - A little hint: "Avoid shared volumes if possible!"
- Everything integrated on the beam pipe

16th Terascale Detector Workshop 2024

self-made 44-pair bundles

Thomas Rudzki – Universität Heidelberg

Integration of services

- Extremely dense detector integration
- Central station services need to **fit below recurl stations**
- Shared volume for services of Vertex detector, SciFi detector, Tile detector and Outer pixel layers
 - A little hint: "Avoid shared volumes if possible!"
- Everything integrated on the beam pipe
- Data transmission via **µ-twisted pair cables**

Helium cooling

- Providing a flow of a **few grams per second** of gaseous helium at **ambient pressure** is non-trivial
- Novel industry application in recent years: Miniature turbo compressors

Turbo compressor providing 16 g/s helium (from Fischer)

16th Terascale Detector Workshop 2024

Thomas Rudzki – Universität Heidelberg

Helium cooling

- Providing a flow of a **few grams per second** of gaseous helium at **ambient pressure** is non-trivial
- Novel industry application in recent years: Miniature turbo compressors
- 4x pixel stations are cooled by separate circuits •
 - 1x 2 g/s for the vertex detector Ο
 - 3x 16 g/s for the outer layer stations Ο

Mu3e magnet

Helium cooling

- Providing a flow of a **few grams per second** of gaseous helium at **ambient pressure** is non-trivial
- Novel industry application in recent years: Miniature turbo compressors
- 4x pixel stations are cooled by separate circuits •
 - 1x 2 g/s for the vertex detector Ο
 - 3x 16 g/s for the outer layer stations Ο
- Measure mass flow with custom Venturi tubes

Helium compressor rack

Thomas Rudzki – Universität Heidelberg

Helium cooling

- Providing a flow of a few grams per second of gaseous helium at ambient pressure is non-trivial
- Novel industry application in recent years: Miniature turbo compressors
- 4x pixel stations are cooled by separate circuits
 - 1x 2 g/s for the vertex detector
 - 3x 16 g/s for the outer layer stations
- Measure mass flow with custom **Venturi tubes**
- 16 g/s compressors commissioned 2023

Helium cooling

Cooling studies for the vertex detector

- Silicon heater modules as thermal mechanical mock-up
- Studied heat dissipations of up • to 350 mW/cm² (expected ~215 mW/cm²)
- ΔT = chip temperature gas inlet temperature •

	350 mW/cm ²	215 mW/cm ²
Max. ΔT	< 54 K	< 35 K
Avg. ΔT	~ 31 K	~ 17 K

Requirement of Max. ΔT < 60 K 🗸

Thomas Rudzki – Universität Heidelberg

28

(expected scenario)

difference (K

Summary

- Mu3e bases on a low mass tracker with an unprecedented low material budget of ~ 0.1 % X₀ per tracking layer
- Solely silicon-only trackers will do even better (see next talk I guess (2))
- **Gaseous helium cooling** is employed to further minimize the overall material budget
- Material reduction extends to the passive volume to accommodate integrated services within limited space (incl. µ-twisted pair cables, LV copper bars, no conventional connectors, etc...)
- Mu3e vertex detector under construction now!
 - Cosmic run in summer/autumn this year (2024)
 - First beam data by the end of this year (2024)

QC stand of 1st final vertex detector ladder