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Determination of long range antiferromagnetic order by powder 
neutron diffraction 
 
 
 
 
 
Practical course on powder diffraction at the neutron spallation source SINQ of the Paul 
Scherrer Institute 
 
 
 
 
 
 
 
 
Summary 
 
 
Antiferromagnetic (AFM) ordering of Mn spins in manganese sulfide MnS or manganese 
oxide MnO will be determined by powder neutron diffraction. These compounds crystallize 
in a rock salt face centered cubic crystal structure. Manganese sulfide MnS shows a 
transition to the AFM state with the propagation vector !"⃗ =(½, ½, ½) at the Néel 
temperature of about 150 K. The Mn-spins forming planes perpendicular to the body 
diagonal are ferromagnetically aligned, whereas the spins in the neighboring planes are 
antiparallel.  
During the practicum we will try to reproduce one of the neutron diffraction experiments 
performed during 1946-1951 for which C.G. Shull was honored with the Nobel Prize in 1994. 
We will perform neutron diffraction experiment with MnS using powder diffractometer 
HRPT at the neutron source SINQ of the Paul Scherrer Institute. From the analysis of the 
nuclear and magnetic Bragg peak intensities and positions we will verify the crystal and 
magnetic structures of manganese sulfide and determine the size of the magnetic moment 
on manganese.  
Note: The practicum is performed during only one day at PSI. To perform the experiment 
effectively and analyze the experimental data it is necessary to have basic theoretical 
background on mathematical description of crystal structure and diffraction (reciprocal 
space, Brillouin zone, structure factor, etc.). 
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MAGNETIC ORDERING PHENOMENA 

Neutron Scattering in Novel Materials (World Scientific, 2000), p. 196-206, L. Keller 

1 Introduction 

A magnetic structure is a periodic arrangement of magnetic moments in a crystalline material. 
This implies that magnetic materials are composed of periodic arrangements of vectorial spin 
densities superimposed on periodic arrangements of atoms with scalar charge- or nuclear-
densities. The order of the latter densities (crystal structure) is determined by x-ray or neutron 
diffraction. The order of the former can also be studied by these techniques. But despite the 
impressive progress of synchrotron radiation sources and techniques, x-ray scattering is still 
rather a complementary new tool in magnetism, and neutron scattering is the experimental 
method of choice for studying magnetic structures in condensed matter on an atomic scale. 

2 Magnetic interactions 

The magnetic order in crystalline material is governed by the competition between the 
exchange interactions and the magnetic anisotropy.  

The magnetic interaction, which arises from the direct Coulomb interaction among 
electrons from two ions (Fig. 1), is known as direct exchange. Even though this is referred to 
as a magnetic interaction one should not be lulled by this nomenclature into forgetting that 
underlying the exchange interaction are nothing but electrostatic interaction energies and the 
Pauli exclusion principle. It often happens that two magnetic ions are separated by a 
nonmagnetic ion (i.e. one with all electronic shells closed). It is then possible for the magnetic 
ions to have a magnetic interaction mediated by the electrons in their common nonmagnetic 
neighbors, which is more important than their direct exchange interaction. This type of 
magnetic interaction is called superexchange.  

 
 
 

 
Figure 1:  Schematic illustrations of (a) direct exchange, in which the magnetic ions interact because their charge 
distribution overlap; (b) superexchange, in which magnetic ions with non-overlapping charge distributions interact 
because both have overlap with the same nonmagnetic ion; and (c) indirect exchange, in which in the absence of 
overlap a magnetic interaction is mediated by interactions with the conduction electrons. 

 
The magnetic interactions that are present in insulators, direct and superexchange, are 

short-range interactions. Yet another source of magnetic interaction can occur in metals. In 
addition to their direct exchange coupling, the electrons of the partially filled shells of the 
magnetic ions are coupled through their interactions with conduction electrons. This 

(a)

(b)

(c)
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mechanism (in a sense the metallic analogue of superexchange in insulators) is known as 
indirect exchange. It can be stronger than the direct exchange coupling, especially in rare-earth 
metals since the f-shells generally overlap very little. Such an interaction by polarization of 
conduction electrons, the RKKY interaction [1], is long-range and oscillatory. One should also 
mention that there are also important exchange interactions in metals among the conduction 
electrons themselves, often referred to as itinerant exchange. 

The exchange interaction depends on the mutual orientation of the magnetic moments and 
on the distance between magnetic atoms. At moderate temperatures thermal motion of the 
magnetic moments is usually stronger than the exchange interaction energies and prevents 
magnetic order on a macroscopic time scale. The magnetic moments are then randomly 
oriented, i.e. disordered. Such a magnetic state is called paramagnetism. Below a critical 
temperature for magnetic ordering (Curie temperature TC or Néel temperature TN) the magnetic 
interaction may prevail and long-range magnetic ordering in Weiss domains of magnetic 
materials occurs. A positive exchange constant Jij between two moments on sites i and j favors 
parallel alignment of the spins (ferromagnetism), whereas negative Jij would yield the lowest 
energy for antiparallel orientation of the spins, i.e. for antiferromagnetic coupling.  

These exchange interactions are in competition with the magnetic anisotropy due to 
crystalline electric field effects [2]. The resulting magnetic structures can be quite complex, 
even for elements [3], and depend strongly on external parameters such as temperature, 
magnetic field and pressure. In the following some examples of magnetic structures observed 
in rare-earth compounds are discussed and the role of neutron scattering, with emphasis on 
powder neutron diffraction, in the analysis of magnetic ordering is shown. 

 
 

3 Magnetic order and neutron diffraction 

A neutron diffraction study of a magnetic structure does not start from scratch. One usually 
bases the study on available information from bulk magnetic measurements, which means that 
one at least knows the ordering temperature and the temperature dependence of the average 
susceptibility. It is also a good approach to perform a symmetry analysis that predicts possible 
incipient magnetic structures consistent with the crystalline space group. Three-dimensional 
long-range magnetic ordering leads to coherent scattering in neutron diffraction experiments 
and to Bragg peaks in the neutron diffraction pattern. The magnetic unit cell determines the 
positions of these peaks (as the chemical unit cell determines the positions of the nuclear Bragg 
peaks). Therefore an analysis of the magnetic Bragg peak positions is always the first step in 
the analysis of a magnetic structure in order to derive the magnetic unit cell. The magnetic 
moment arrangement in the cells, i.e. the magnetic structure factor, determines the peak 
intensity, in analogy to the nuclear structure factor for nuclear scattering. 

The magnetic neutron scattering is caused by the interaction of the magnetic moment n of 
the neutron and the atomic magnetic moments 

 = -µB( ) (1) 

due to unpaired electrons.  denotes the orbital angular momentum operator  and  the 
spin angular momentum operator. 

In the case of unpaired d-electrons such as 3d5 of an Fe3+ ion in a solid, the orbital 
momentum is generally quenched by the crystalline electric field, and thus the maximum 
magnetic moment component < z> = gS = 5 µB (g ≈ 2, S = 5/2). On the other hand for unpaired 
f-electrons such as 4f10 of the rare-earth ion Ho3+ one has a 5I8 ground state of the free ion, i.e. 
S = 2, L = 6 and J = L + S. These values yield a maximum < z> = gJ = 10 µB (g = 5/4, J = 8). 
Generally the ordered magnetic f-electron moments of rare-earth ions in crystals are reduced 
below the values of free ions due to the crystalline electric field splitting of the ground state, 
which may be measured by means of inelastic neutron scattering [2]. In addition, hybridization 

ˆ µ 

ˆ µ     ̂ L + 2 ˆ S 

  ̂ L   ̂ r × ˆ p   ̂ S 

ˆ µ 

ˆ µ 
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effects of f-electrons and conduction electrons in strongly correlated electron systems, like the 
Kondo compound CePd2Ga3 [4], may further reduce the ordered moment and ordering 
temperature, or even suppress magnetic ordering at all. 

 

3.1 Paramagnetism 
As mentioned above, in the paramagnetic state the magnetic moments are randomly oriented, 
i.e. disordered. The differential magnetic cross section for a Bravais lattice paramagnet 
consisting of a single type of magnetic J state ions can be derived from the general cross section 
for magnetic neutron scattering [5] and reads as 

 (2) 

with p = ge2/(2mec2). The paramagnetic scattering is purely incoherent with an intensity 
contribution to the background that is proportional to J(J+1). Moreover the paramagnetic 
intensity diminishes with increasing scattering vector Q proportional to the square of the 
neutron magnetic form factor F(Q) (Fig. 2) which is the Fourier transform of the magnetic 
potential.  

 
Figure 2:  Magnetic form factor for the trivalent rare-earth ion Er3+ (dipole approximation) with ground state 4I15/2. 

 

In the dipole approximation the magnetic form factor F(Q) reads as 

F(Q) = <j0(Q)> + <j2(Q)>  (3) 

with radial integrals <jn> calculated in relativistic Dirac-Fock formalism and tabulated in [6]. 
 

3.2 Ferromagnetism 
In the absence of an external magnetic field a ferromagnetic crystal is composed of small 
regions, or domains, in each of which the electron spins tend to align in the same direction. 
The cross section for a sample with many domains is 

 (4a) 

 (4b) 
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where  is a unit vector in the direction of the magnetic moment and  is a unit vector in the 
direction of the reciprocal lattice vector . 

Using a as angle between the spin direction and , 2 is equal to sin2a, i.e. the spin 
component perpendicular to  determines the magnetic intensity. We see from the d-functions 
in Eq. (4a) that for a ferromagnetic crystal the magnetic Bragg peaks occur at the same points 
in reciprocal space as the nuclear Bragg peaks. However, there are several important 
differences between magnetic and nuclear Bragg scattering. Firstly, the magnetic scattering, 
being proportional to 2, is very temperature dependent, and falls to zero at the Curie 
temperature TC. The nuclear scattering varies little with temperature; the only term in the cross 
section that is temperature dependent is the Debye-Waller factor. Secondly, for magnetic 
scattering, the magnetic form factor F(Q) falls rapidly with increasing Q (Fig. 2). This is 
because the form factor is the Fourier transform of the magnetic potential, and the latter has a 
long range. The nuclear potential on the other hand has a very short range, and its Fourier 
transform is virtually independent of Q.  

An example for a ferromagnetic compound is the rare-earth trichloride TbCl3 which orders 
in the orthorhombic space group Cmcm. This compound has been investigated by neutron 
diffraction measurements on polycrystalline samples [7]. Below TC = 3.7 K long-range 
ferromagnetic order was found (Fig. 3), and the refinement of the data yielded a large saturation 
moment of 8.4 µB per Tb3+ ion and an alignment of the magnetic moments perpendicular to the 
c axis. 

 
Figure 3:  (a) Observed (points, a linear background has been subtracted) and calculated (line) neutron diffraction 
intensities of paramagnetic TbCl3 at 4.2 K. (b) Observed (points) and calculated (line) neutron diffraction patterns 
of ferromagnetic TbCl3 at 1.3 K. 

 
 

3.3 Collinear antiferromagnetism 
For a commensurate collinear antiferromagnet consisting of two sublattices A and B with 
antiparallel spin alignment, one obtains 

 (5a) 

 (5b) 

where  = +1 for an ion in sublattice A and  = -1 for an ion in sublattice B. 
We can see from the d-functions in Eq. (5a) that now the magnetic Bragg peaks appear at 

positions corresponding to the magnetic unit cell in reciprocal space. Because of magnetic unit 
cells that are larger than the chemical cell and due to new extinction rules, generally new 
antiferromagnetic Bragg reflections appear in the ordered state. 
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Figure 4:  (a) Neutron diffraction pattern (magnetic scattering only) and corresponding magnetic structure in 
Nd3Pd20Ge6 below TN1 = 1.75 K. While the Nd moments on one site are antiferromagnetically ordered, the 
moments on the other site remain disordered. (b) Magnetic neutron diffraction pattern and corresponding magnetic 
structure below TN2 = 0.58 K; also the second Nd sublattice is magnetically ordered. 

Antiferromagnetism has been observed in many rare-earth compounds, recent examples 
are the new cubic compounds of the general composition R3Pd20X6 (R = rare earth; X = Pd, 
Si). These systems crystallize in the cubic space group Fm m in which the rare-earth ions 
possess two crystallographically different sites, 4a and 8c, respectively. Looking only at the 
magnetic ions, the crystallographic structure may be viewed as built up by two interpenetrating 
sublattices, each one formed by the rare-earth ions on each sites. Bulk magnetic measurements 
revealed two magnetic phase transitions (TN1 and TN2) and neutron diffraction experiments, 
e.g. for Nd3Pd20Ge6 [8], found that the two sublattices undergo independent magnetic phase 
transitions to long-range antiferromagnetic order at TN1 and TN2. In the temperature range TN1 
> T > TN2, a coexistence was found of antiferromagnetic ordering of ions on site 8c with 
disordered moments on the site 4a. At TN2 the sublattice formed by ions on 4a sites also 
undergoes a phase transition to antiferromagnetic order. 

 
 

3.4 Incommensurate magnetic structures 
In metallic rare-earth compounds the principal interaction which couples the magnetic 
moments is indirect RKKY-type exchange. The long range and oscillatory character of this 
coupling may compete with other interactions, for example the crystal field anisotropy or even 
weaker interactions like magnetoelastic coupling or two-ion quadrupolar interactions. The 
interplay between these competing interactions may lead to incommensurate or amplitude-
modulated magnetic structures and complex magnetic phase diagrams. Incommensurate 
magnetic structures have periodicities that do not match the periodicity of the crystal lattice. 

 
 
 

 
Figure 5:  Schematic view of a simple spiral magnetic structure (helix). The long horizontal arrow shows the 
repeat distance. 
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It can be shown that the elastic magnetic neutron scattering cross section for e.g. an 
incommensurate spiral structure (Fig. 5) is 

 (6) 

Eq. (6) shows that magnetic Bragg scattering occurs when Q = t ± K. Thus each nuclear Bragg 
peak Q = t is accompanied by a pair of magnetic satellites (Fig. 6). The periodicity of an 
incommensurate magnetic structure is usually described by the magnetic propagation vector k 
= (k1, k2, k3), where ki are the components of K in reciprocal lattice units. 
 

 
Figure 6:  ErGa3: Observed (points) and calculated (line) magnetic difference neutron diffraction pattern showing 
the magnetic peaks only (satellites). The arrows indicate the nuclear peak positions.  

 
The magnetic ordering of Er moments in ErGa3 has recently been investigated by powder 

and single crystal neutron diffraction [9]. The diffraction pattern is characterized by the 
presence of satellite peaks, at positions that do not coincide with reciprocal lattice points either 
of the chemical cell or any simple multiple of it. As no higher order satellites were detected, 
the models considered were restricted to sinusoidal modulated types. The incommensurate 
magnetic structure of ErGa3 has been satisfactorily described by a single propagation vector k 
= [1/2+d, 1/2, 0], d = 0.042. It can be viewed as an antiferromagnetic structure corresponding 
to k = [1/2, 1/2, 0], i.e. doubling of the cell in a and b directions, superimposed by a sinusoidal 
incommensurate modulation along a. 

Another example of incommensurate ordering in rare-earth compounds is PrPdAl [10]. In 
this compound the rare-earth ions are arranged on a triangular lattice which hinders the 
formation of the antiferromagnetic spin arrangement favored by the exchange interactions. The 
magnetic structure of such a geometrical frustration system is driven by the competition of 
geometrical restrictions and exchange couplings. In PrPdAl this results in a remarkable 
reduction of the ordered moments in the ab-plane as well as an incommensurate modulation 
along c. 

 

4 Concluding remarks 

Neutron diffraction is a powerful method for measuring magnetic ordering and analyzing 
magnetic structures. It has been one of the most important tools in the wide field of rare-earth 
magnetism in the past - and it still is, as the very recent examples in this chapter show. Even 
though examples of neutron powder experiments were given here it must be noted that for most 
complicated magnetic structures single crystal experiments are required in order to 
unambiguously determine the correct magnetic order. 
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Neutron scattering is the reference technique for probing long-range order formed on a 
lattice of atoms or magnetic moments. Under certain conditions it can also be invaluable for 
studying more exotic types of ordered structures involving electron charge distributions. One 
of them is quadrupolar ordering. Besides their magnetic dipole moments, lanthanide elements 
with incomplete 4f electron shells are known to also possess higher-order moments 
(quadrupole, octupole, etc.). In a classical picture, this reflects the non-sphericity of the electron 
charge distribution. In the case of solids, pair interactions between 4f quadrupoles located at 
neighboring sites can occur either directly through their electrostatic potentials (usually weak), 
or indirectly through various channels such as lattice strains (cooperative Jahn-Teller effect), 
conduction electrons in metals (RKKY-type coupling), higher-order exchange terms, etc. For 
most real systems, conventional magnetic interactions dominate, and the 4f dipole-moment 
lattice orders in a long-range magnetic structure at low temperature. Accordingly, the 
quadrupole moments will have non-zero values in the magnetic state, but this is only the result 
of dipole ordering. More rarely, quadrupole interactions can prevail and produce a phase 
transition on their own, whose primary order parameter is a component, or a combination of 
components, of the quadrupole tensor. It has been demonstrated in several systems such as 
TmTe [11] that neutron diffraction, combined with a large external magnetic field, can provide 
a powerful (but indirect) tool for studying quadrupolar order in solids.  
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MAGNETIC ORDER IN MnS 

 
5. Practical course at SINQ 
 
5.1 Manganese sulfide MnS 
 
 
- rock salt crystal structure 
- ionic crystal:  Mn2+, S2- 
 
 

 
 
 
- lattice constant a = 5.199 Å at T = 4.2 K 
- space group $%3'% 
- electronic configuration of Mn2+:  3d5 

- Néel temperature TN = 161 K 
- long-range antiferromagnetic order: antiferromagnetic stacking along (111) of 
ferromagnetic planes 
- therefore doubling of the magnetic unit cell with respect to the crystallographic unit cell 
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5.2 Neutron diffraction of MnS at room temperature 
 
 
( = 2+!"# sin /!"#     Bragg law 
 
 (: neutron wavelength, +!"#: d-spacing of scattering plane ℎ!1 
 /!"#: (half) scattering angle of reflection ℎ!1 in diffraction pattern 
 
+!"# =

2

√ℎ$ + !$ + 1$
 

 
 2: cubic lattice constant, ℎ, !, 1 indices of scattering plane 
 

6⃗!"# =
27
2
(ℎ, !, 1) 

 
corresponding vector in reciprocal space 

 
 
Tasks: 
 
- measure a diffraction pattern of MnS in the paramagnetic state, e.g. at T = 250 K 
 
-determine peak positions :, d-spacings and indices (ℎ, !, 1) for all observed peaks 
 
 
 
 
Coherent elastic cross section for nuclear neutron diffraction: 
 
+;
+Ω

~>?$%&⃗ !"#?
$
@(A"⃗ − 6⃗!"#)

%&⃗ !"#
 

 A"⃗ : scattering vector, 6⃗!"#: reciprocal lattice vector defining scattering planes 
 @(A"⃗ − 6⃗!"#)  →  peak position given by crystal lattice (unit cell) 
 $%&⃗ !"#: structure factor of unit cell 

$%&⃗ !"# =>C(⃗$D
)%&⃗ !"#·(⃗$

(⃗$

 

 +⃗): atomic coordinate of i-th atom in real space, sum runs over all atoms in unit cell 
 C(⃗$: scattering length of atom at position +⃗)  
 
Intensity ~ ?$%&⃗ !"#?

$   →  peak intensity is mainly given by arrangement of atoms in unit cell 
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For cylindrical geometry of the powder sample container the integrated intensity of the 
scattered neutrons of the Bragg peak at ?A"⃗ ? is given by 
 

E(A) = F · H(/) · I(/) ·
+;
+Ω

= F · H(/) · I(/) · $$(A) · %J1K 
 
C: scale factor,  H(/): absorption factor,  I(/): Lorentz factor,  mult: multiplicity 
 

I(/) =
1

sin / sin 2/
 

 
The Lorentz factor I(/) is a geometrical correction depending on the scattering geometry. 
 
 
 
 
 
 
For MnS:  C+, =	 -3.73 fm,  C- =	 2.85 fm 
 
+⃗-vectors:  Mn:  +⃗.= a(0, 0, 0)  +⃗$= a(0, ½, ½) 
    +⃗/= a(½, 0, ½)  +⃗0= a(½, ½, 0) 

  S:  +⃗1= a(½, ½, ½)  +⃗2= a(½, 0, 0) 
    +⃗3= a(0, ½, 0)  +⃗4= a(0, 0, ½) 
 
 
 
Tasks: 
 
- calculate ?$%&⃗ !"#?

$
 for (ℎ, !, 1)  = (1,1,1),  calculate the multiplicity 

 
- calculate ?$%&⃗ !"#?

$ for (ℎ, !, 1)  = (2,0,0),  calculate the multiplicity 
 
- compare ratio of  E(6⃗...) / E(6⃗$55) with the measured intensity ratio 
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5.3 Neutron diffraction of MnS in the magnetically ordered state 
 
 
 
Tasks: 
 
- measure a diffraction pattern of MnS in the magnetically ordered state, e.g. at T = 10 K 
 
- compare this date with the paramagnetic pattern at room temperature 
 
- index the magnetic peaks, i.e. find (ℎ, !, 1) for each magnetic peak 
 
- based on the indices, what is the magnetic unit cell compared to the crystallographic one 
 
- which magnetic structure, i.e. which arrangement of the magnetic moments, is compatible 
with the magnetic unit cell 
 
- determine the critical temperature for the onset of magnetic order in MnS by measuring 
   the temperature dependence of the magnetic order 
 
 
 
 
 
 
Coherent elastic cross section for collinear antiferromagnetic order 
 
+;
+Ω

	~ > ?$+,!"#?
$
@(A"⃗ − 6⃗+,!"#)

%&⃗%,!"#
 

 
 $+,!"#: antiferromagnetic structure factor 
 
 
 
The intensity of the magnetic Bragg peak at ?A"⃗+? is 
 
E(A+) = F · H(/) · I(/) · ?$⃗+7?

$
· %J1K 

 
where  

$⃗+7 =
1
2
N5>D)8&⃗ %·(⃗'

9
O⃗97								and				O⃗7 =	RO⃗ −

A"⃗ +(O⃗ · A"⃗ +)

A+
$ S	 

where O⃗9  is the magnetic moment in units O: of atom at position N⃗9  and N5 = -0.54·10-12 cm,  
A"⃗ + ≡	 6⃗+,!"#  


