An ultra-light helium cooled pixel detector for the Mu3e experiment

Highℝ

Thomas Rudzki - Physikalisches Institut Heidelberg NeFroLeF 2023 - 16.05.2023

Probing the Standard Model with Mu3e

- **Mu3e** is a high-precision experiment at Paul Scherrer Institut (PSI), Switzerland
- $\mu \rightarrow eee$ in SM (including neutrino mixing):
 - BR (µ→eee) < 10⁻⁵⁴
 - beyond observable levels
- Enhancement of BR by several orders possible by new physics
- Current limit:
 - <u>SINDRUM</u> (1988): **BR < 10⁻¹²**
- Aimed single-event sensitivity:
 - Phase I: **BR < 2** · **10**⁻¹⁵
 - Phase II: **BR < 10⁻¹⁶**

Standard Model decay via neutrino mixing

Probing the Standard Model with Mu3e

- **Mu3e** is a high-precision experiment at Paul Scherrer Institut (PSI), Switzerland
- $\mu \rightarrow eee$ in SM (including neutrino mixing):
 - BR (µ→eee) < 10⁻⁵⁴
 - beyond observable levels
- Enhancement of BR by several orders possible by new physics
- Current limit:
 - <u>SINDRUM</u> (1988): **BR < 10⁻¹²**
- Aimed single-event sensitivity:
 - Phase I: **BR < 2** · **10**⁻¹⁵
 - Phase II: **BR < 10⁻¹⁶**

Limit

arXiv:2111.05788v1

Probing the Standard Model with Mu3e

- **Mu3e** is a high-precision experiment at Paul Scherrer Institut (PSI), Switzerland
- $\mu \rightarrow eee$ in SM (including neutrino mixing):
 - BR (µ→eee) < 10⁻⁵⁴
 - Beyond observable levels
- Enhancement of BR by several orders possible by new physics
- Current limit:
 - <u>SINDRUM</u> (1988): **BR < 10⁻¹²**
- Aimed single-event sensitivity:
 - Phase I: **BR < 2 · 10**^{-15.}
 - Phase II: **BR < 10⁻¹⁶**

arXiv:2111.05788v1

New Frontiers on Lepton Flavor 2023

➡ fast detectors

 \Rightarrow high granularity

Experimental challenges

- **High rates** ($\geq 10^8 \mu^+$ decays per second)
- **Low-momentum** particles
 - Muons decay at rest 0
 - Electron/Positron momenta < 53 MeV/c \cap
- Signal-to-**background** discrimination
 - $\mu \rightarrow eeevv$ (main background channel) Ο
 - Limited by multiple-Coulomb scattering Ο
 - Accidental background Ο

gaseous helium as coolant Iow material budget 50 µm thin pixel detector

Bhabha

Mu3e Phase I Simulation

 10^{2}

10¹⁵ muon stops

at 10⁸ muons/s

Invariant mass of signal decay, radiative decay and accidental background (Bhaba+Michel) [Mu3e TDR]

 $\mu \rightarrow eee$

New Frontiers on Lepton Flavor 2023

carrying sensor chips

Pixel ladders

Innermost two pixel layers

Mu3e vertex detector

- High-voltage monolithic pixel sensors (HV-MAPS)
 - 50 µm thin Ο
 - Expected heat dissipation of ~ 215 mW/cm² Ο
- Mechanical support:
 - Aluminized Kapton foils (HDI)
 - Some Origami skills
 - Chips glued on foils + **spTAB** for electrical 0 connections
- Cooled by gaseous helium
 - 2 flow channels (between layers, Ο and around outer layer)
 - Mass flow of 2 q/s Ο

Electrical connections

Detector mount

(fixed)

more general overview on Mu3e: past talk by

Cristina Martin Perez - 16.05.2023 - 11:30

Detector mount

Endring

loating, spring loaded)

2 cm

Mu3e vertex detector

- Innermost two pixel layers
- High-voltage monolithic pixel sensors (HV-MAPS)
 - \circ 50 µm thin
 - Expected heat dissipation of ~ 215 mW/cm²
- Mechanical support:
 - Aluminized Kapton foils (HDI)
 - Some Origami skills

- Chips glued on foils + **spTAB** for electrical connections
- Cooled by gaseous helium
 - 2 flow channels (between layers, and around outer layer)
 - Mass flow of 2 g/s

spTAB connection

Cooling studies - setup Helium cooling plant Pumping 2 g/s helium with **miniature turbo compressor** Type of compressors is a **novelty** on the market Cooling studies Prototype helium cooling plant Ο Thermal-mechanical detector mock-up Ο Silicon heater chips instead of pixel chips helium flow Ο ~ 2 m directions heating loop resistive thermometer heat exchanger Venturi mass flow meter silicon heater module Silicon heater chip miniature turbo New Frontiers on Lepton Flavor 2023 Thomas Rudzki – Universität Heidelbe compressor

Cooling studies - measurement

- Chip temperatures required to be < 70°C
 - Glass transition temperature of epoxy used
- Temperature measurements given as difference to gas inlet temperature

Thomas Rudzki – Universität He

Analysis:

- Estimate missing temperatures readings
- Correct for temperature-dependent resistances

Layer 1 Layer 0 0 40 35 Ŷ 30 adder ID 25 adder 2 20 15 6 10 Ω Chip ID 2 Chip ID simulated temperature maps Layer 0 Chips 1 to 5 : $\mu = 0.05$, $\sigma = 2.90$ Layer 1: $\mu = 0.02$, $\sigma = 1.32$ Layer 0 Chip 0 : $\mu = 4.62$, $\sigma = 4.68$ 3000 200 2500 150 2000 1500 100 1000 50 500

Temperature difference (fit - sim) (K) Uncertainty distributions for estimating missing temperature readings

0 5 10 15

-10 -5

Thomas Rudzki – Universität Heidelberg

1200

1000

800

600

400

200

-10

-5

0

Temperature difference (fit - sim) (K)

5

10

-5.0

-2.5

0.0

Temperature difference (fit - sim) (K)

2.5

Cooling studies - analysis

Step 1: Missing temperature reading

- Simulated temperature maps • (uniformly heated mock-up implemented in Ansys CFX) 18.2)
- Monte-Carlo:
 - Remove 17x random temperature readings Ο
 - 5 selection criteria to match the missing 0 temperature pattern of the mock-up
 - Estimate missing temperatures Ο by 2nd grade polynomial
 - Determine uncertainty of this method Ο

Cooling studies - analysis

Step 2: Correct for temperature-dependent resistances

- Resistance changing linearly with temperature
- 3 chips are powered in parallel
 - Current varies due to temperature gradient
- Line resistance depends on chip position

Step 3: Re-scale to heat dissipation of interest

Valid due to **linear power-to-temperature** relation

Thomas Rudzki – Universität Heidel

Cooling studies - results

- **Expected scenario** (215 mW/cm²)
 - Max. temperature difference < 35 K 0
 - Avg. temperature difference ~ 17 K Ο
- **Conservative scenario** (350 mW/cm²)
 - Max. temperature difference < 54 K 0
 - Avg. temperature difference $\sim 31 \text{ K}$ Ο
- For 2 g/s helium:

Chip temperatures are < 70°C for gas inlet temperatures of up to 10°C even for 350 mW/cm²

Laver

aver 0

0

50

10

Layer 1

1 2 3

Chip ID

Layer 1

Chip ID

4 5

0

1 .

2

3

6

7

8

temperature difference maps 215 mW/cm²

(expected scenario)

0

1

2

3

6 7

8

0 1 2 3

(conservative scenario)

adder ID

adder ID

Layer 0

2 3

Chip ID

Layer 0

0

1 .

2

6

0 -

2

5

6

7

0

2 3 Chip ID

adder ID

adder ID

New Frontiers on Lepton Flavor 2023

13

Experimental challenges

- **High rates** ($\geq 10^8 \mu^+$ decays per second)
- Low-momentum particles
 - Muons decay at rest
 - Electron/Positron momenta < 53 MeV/c
- Signal-to-background discrimination
 - $\mu \rightarrow eeevv$ (main background channel)
 - Limited by multiple-Coulomb scattering
 - Accidental background

➡ low material budget

➡ fast detectors

➡ high granularity

Pixel sensor: 80 x 80 μm² small pixels < 20 ns time resolution

accidental background (Bhaba+Michel) [Mu3e TDR]

MuPix11 - the pixel chip

- HV-MAPS technology
 - Commercial 180 nm HV-CMOS process
 - Deep N-well diode
 - Fast charge collection via drift
 - **Monolithic design**: in-pixel electronics, detection & readout in one chip
- MuPix11
 - 80 x 80 μm² pixel size
 - Mu3e requirements:
 - < 20 ns time resolution</p>
 - > 99 % efficiency (max. noise 1 Hz/pixel)
 - \circ Thinned to 50 μ m
 - Zero-suppressed continuous readout scheme

MuPix11 - the pixel chip

- HV-MAPS technology
 - Commercial 180 nm HV-CMOS process
 - Deep N-well diode
 - Fast charge collection via drift
 - **Monolithic design**: in-pixel electronics, detection & readout in one chip
- MuPix11
 - \circ 80 x 80 μ m² pixel size
 - Mu3e requirements:
 - < 20 ns time resolution</p>
 - > 99 % efficiency (max. noise 1 Hz/pixel)
 - \circ $\,$ Thinned to 50 μm
 - Zero-suppressed continuous readout scheme

MuPix11 - results

- MuPix11 (100 µm thickness) characterized
- All changes from MuPix10 successful
 - Running at full readout speed 0
 - Configuration via serial input Ο
 - On-chip voltage drops minimized Ο
- Efficiency & time resolution within specs for Mu3e
- Performance studies ongoing:
 - Thinned sensors (50 µm, 70 µm) Ο
 - Post processing (plasma etching) Ο

raw time resolution

~13ns

~15ns

-100 -50

~21ns

~26ns

Thomas Rudzki – Universität Heidelberg

100

offline improvements via time walk correction

100V VNEBPix - 0x4

60V. VNFBPix = 0x5

-20V, VNFBPix = 0x5

10V. VNFBPix = 0x5

Preliminary

time time [ns]

100 150

50

delay correction

MIP detection efficiency

 $e^{+}/\mu^{+}/\pi^{+}$ beam

efficiency plateau forming for HV > 10 V

measured with 350 MeV

Taken from Heidelberg PhD student **David Maximilian Immig**

Conclusion

- Ultra-light helium cooled pixel detector with HV-MAPS feasible
- Helium cooling concept verified for the Mu3e vertex detector
- Final chip, MuPix11, available and performing to specs
- Characterization of 50 µm thin MuPix11 ongoing
- Full Mu3e vertex detector (v1) construction scheduled this summer
 - 1st operation with cosmics expected for late 2023
- Upscaling of helium cooling system:
 - Testing of 16 g/s sub-system ongoing for outer pixel layers
 - Construction of final helium plant about to start
 - Final commissioning Q1 2024

Backup

Pattern of functional chips in mock-up

- 8x silicon heater chips could not be powered
- 18x silicon heater chips had no functional connection to the resistive thermometer
- pattern fully disjunct

Mae

Mass flow dependence of the chip temperatures

- Measurement of a ladder in both pixel layers each
- mass flow range between 1.4 2.0 g/s covered
- linear dependence observed
- mass flow rate can be potentially reduced during operation if needed
- temperature can easily be estimated

Thomas Rudzki – Universität Heidelbe