News & Highlights

Datum
MM20100118 teaser.jpg

News from the smog chamber: mechanisms of particle formation in the atmosphere unveiled

Media Releases Environment Energy and Climate Atmosphere

Up to the present time, the nucleation or new formation of particles in the atmosphere has been a great enigma. Until recently, research was based on the assumption that sulphuric acid played the central role in particle formation. However, laboratory experiments and field tests have consistently provided conflicting results. In the lab, considerably higher concentrations of sulphuric acid are required for nucleation to take place than in the atmosphere itself. Now scientists from the Paul Scherrer Institute (PSI) have found out the cause for these conflicting results from their smog chamber. These findings will advance climate research to a significant degree.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
MM20091210 Smogkammer dez09 002 tn.jpg

Mystery solved: how fine particulates are formed in the air

Media Releases Environment Energy and Climate Atmosphere

Researchers from the Paul Scherrer Institute, the University of Colorado and 29 other research institutions in various countries have investigated the composition of the organic constituents of the fine particulates found in various regions of the world, and have identified the original substances from which they are formed in each case. For the first time ever, this has enabled them to explain the role played by the individual components of emissions in the development of fine particulates.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.

Vibrational Spectra of Adsorbates from DFT

The hydrolysis of isocyanic acid was studied experimentally and theoretically and a reaction mechanism on different catalysts was established. The decreasing NOx emission limits for diesel vehicles impel the further development of the existing NOx deactivation technologies, particularly the selective catalytic reduction (SCR) of nitrogen oxides with urea. In the urea-SCR process, urea is injected into the hot exhaust gas, where it thermally decomposes into isocyanic acid (HNCO) and ammonia.

Read more