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Abstract

Understanding interlayer and intralayer coupling in two-dimensional layered

materials (2DLMs) has fundamental and technological importance for their

large-scale production, engineering heterostructures, and development of flex-

ible and transparent electronics. At the same time, the quantification of weak

interlayer interactions in 2DMLs is a challenging task, especially, from the

experimental point of view. Herein, we demonstrate that the use of X-ray

absorption spectroscopy in combination with reverse Monte Carlo (RMC)

and ab initio molecular dynamics (AIMD) simulations can provide useful
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information on both interlayer and intralayer coupling in 2DLM 2Hc-MoS2.

The analysis of the low-temperature (10-300 K) Mo K-edge extended X-ray

absorption fine structure (EXAFS) using RMC simulations allows for obtain-

ing information on the means-squared relative displacements σ2 for nearest

and distant Mo–S and Mo–Mo atom pairs. This information allowed us fur-

ther to determine the strength of the interlayer and intralayer interactions

in terms of the characteristic Einstein frequencies ωE and the effective force

constants κ for the nearest ten coordination shells around molybdenum. The

studied temperature range was extended up to 1200 K employing AIMD sim-

ulations which were validated at 300 K using the EXAFS data. Both RMC

and AIMD results provide evidence of the reduction of correlation in thermal

motion between distant atoms and suggest strong anisotropy of atom thermal

vibrations within the plane of the layers and in the orthogonal direction.

Keywords: 2D layered materials, interlayer coupling, extended X-ray

absorption fine structure, reverse Monte Carlo simulations, ab initio

molecular dynamics
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1. Introduction

The field of 2D layered materials (2DLMs) is a rapidly growing area of

material science, offering significant potential for technological advancements

[1, 2]. During the last decades, 2DLMs have generated significant interest

due to their extraordinary electronic, magnetic, optical, catalytic, transport,

and tribological properties [3, 4, 5, 6, 7, 8, 9]. The 2DLM family encompasses

a range of substances, including transition-metal dichalcogenides, 2D oxides

and hydroxides, boron nitride, and single-element compounds like silicene,

phosphorene, germanene, and graphene [1, 5, 10]. The unique structure of

2DLMs is determined by strong in-plane (intralayer) covalent bonding and

weak out-of-plane (interlayer) van-der-Waals (vdW) interactions.

The strength of the interlayer coupling plays a crucial role in the process of

exfoliating thin layers and assembling van-der-Waals heterostructures, which

is vital for engineering the electronic, optical, and mechanical properties of

2DLMs for their use in devices [11, 12, 13]. Therefore, accurate quantifi-

cation of this weak interlayer coupling has fundamental, theoretical, and

technological implications for 2DLMs large-scale production and the ongoing

development of flexible and transparent electronics that utilize these materi-

als. For instance, the insertion of an atomic layer-deposited TiO2 interlayer

between exfoliated MoS2 and an electrode can improve the performance of

MoS2 photodetectors [14]. At the same time, encapsulating MoS2 layers with

hexagonal boron nitride in low-power transistors offers protection from envi-

ronmental factors and ensures stability in device operation, even at elevated

temperatures [15]. Furthermore, future integrated circuits will utilize tran-

sistors based on 2D semiconductors that are coupled through van-der-Waals
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interactions with high-κ dielectric and metal contacts [16, 17]. A micropro-

cessor based on an active channel material made of molybdenum disulfide was

demonstrated [18, 19] and opens up new opportunities for next-generation

low-power electronics [20].

Although the physical and chemical properties of 2DLMs associated with

the intralayer bonding have been studied both experimentally and theoreti-

cally [1, 11, 12], the extensive atomic and nanoscale characteristics of their

interlayer vdW-dependent properties (for example, enhanced in-plane stiff-

ness, band gap opening, band structure, and carrier mobility engineering,

interlayer charge transfer/distribution, etc.) is still a major challenge due to

the highly anisotropic nature of the weak interlayer interactions, the lack of

accurate experimental methods to quantify such complex interlayer behav-

ior, and complexity of manipulations with ultra-thin and highly transparent

2DLMs. Therefore, gaining a deeper insight into the weak interlayer interac-

tions in 2D layered materials and their interactions with different substrates is

critical for improving the transfer efficiency and uniform thickness of printed

flakes. This, in turn, is important for the production of high-quality, large-

scale 2DLM-based devices at the micro- and nanoscale [21, 22, 23, 24].

Until now, the experimental approaches for detecting interlayer coupling

in 2DLMs have been limited to photoluminescence, Raman, and angle-resolved

photoemission spectroscopy [12]. However, these methods do not give direct

information on the atomic structure of the material [25]. Note also that

Raman spectroscopy is a selective method providing information about the

frequency of vibrations but not their amplitude. Theoretical modeling of

vdW interactions is also a difficult task because of its highly non-local na-
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ture, so this contribution is often accounted for a posteriori [26].

The present study is largely based on the use of X-ray absorption spec-

troscopy (XAS) which is a direct local structural tool complementary to

diffraction. The technique has been employed in the past to probe the short-

range order in 2DLMs [27, 28, 29]. However, the conventional approach to

the data analysis of the X-ray absorption spectrum, based on multi-shell

modeling, cannot provide reliable information on the medium-range (across

the vdW spacing) interlayer interactions due to a strong correlation between

model parameters for distant coordination shells during fitting [30, 31]. At

the same time, the extraction of such information should be in principle pos-

sible since the range of atomic structure around the absorbing atoms probed

by XAS extends often up to 10–15 Å as follows from the calculations of the

photoelectron mean-free path [30, 31]. Nevertheless, this task is challenging

and requires the combined use of advanced theoretical methods and high-

quality experimental data, i.e. the extended X-ray absorption fine structure

(EXAFS) spectra, which can be recorded nowadays at last-generation syn-

chrotron radiation sources. Recent developments in the EXAFS data analysis

include two approaches based on atomistic simulations – reverse Monte Carlo

(RMC) and molecular dynamics (MD) methods [31]. Both approaches enable

precise examination of the local atomic structure and lattice dynamics with

high accuracy taking into account multiple-scattering contributions [32] and

are well suited for the analysis of distant coordination shells, for example,

interactions between atoms located in neighbouring layers of 2DLMs. Note

that a number of previous works dedicated to the EXAFS studies of MoS2

utilized conventional approach, i.e., the multi-shell fitting, and were limited
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to the analysis of the first two coordination shells of molybdenum atoms only

[27, 28, 33, 34, 35, 36, 37].

In this study, a complex approach based on X-ray absorption spectroscopy,

ab initio molecular dynamics (AIMD), and reverse Monte Carlo methods was

employed to provide insights into the local dynamics in 2DLM 2Hc-MoS2. We

demonstrated, for the first time, the possibility of extracting the tempera-

ture dependence (10-300 K) of intralayer and interlayer interactions in 2DLM

2Hc-MoS2 for the nearest ten coordination shells around molybdenum atoms.

This information was obtained through the analysis of the Mo K-edge EX-

AFS spectra using the reverse Monte Carlo method. The low-temperature

experimental results were complemented with high-temperature (300-1200 K)

AIMD simulations, which were validated at 300 K using EXAFS data. Both

approaches allowed us to observe similar trends in the lattice dynamics of

2Hc-MoS2 and to distinguish between interlayer and intralayer interactions.

2. Experimental

Commercial molybdenum(IV) sulfide (MoS2) powder (Sigma-Aldrich, 98%)

was used in all experiments. The phase of the sample was confirmed using

X-ray powder diffraction and Raman spectroscopy.

The X-ray absorption experiments were conducted at the Mo K-edge as

a function of temperature from 10 to 300 K at the DESY PETRA-III P65

beamline [38]. The storage ring was operating at E=6.08 GeV and current

I=100 mA in top-up 480 bunch mode. A fixed exit double-crystal Si(311)

monochromator was used, and the harmonic rejection was achieved by the

Rh-coated silicon plane mirror. The X-ray absorption spectra were recorded
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Figure 1: Crystallographic structure of 2Hc-MoS2. Atoms located in the nearest ten

coordination shells around the Mo0 atom are indicated.
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in transmission mode using two ionization chambers, while the temperature

was controlled using a liquid helium flow cryostat.

The sample was prepared by mixing MoS2 powder with cellulose in an

agate mortar and pressing the mixture into a pellet using a hydraulic press.

Its thickness was optimized to get the value of the absorption edge jump

∆µ=1. The Mo K-edge EXAFS spectra were extracted following the conven-

tional procedure [30]. The Fourier transforms (FTs) of the EXAFS spectra

were calculated using 10% Gaussian function. Note that the peak positions

in all FTs differ from their true crystallographic values because of the EXAFS

phase shifts.

3. Reverse Monte-Carlo simulations

The structural information encoded in the experimental Mo K-edge EX-

AFS spectra was extracted using the reverse Monte-Carlo method based on

an evolutionary algorithm approach (RMC/EA) [39, 40]. The simulations

were performed by the EvAX code [40]. The RMC/EA method involves

randomly changing the atomic coordinates within a three-dimensional struc-

ture model of the material in order to minimize the difference between the

experimental and calculated configuration-averaged EXAFS spectra. Both

structural and thermal disorder in the material, as well as multiple-scattering

effects, were taken into account.

The initial structural models for the RMC/EA calculations were con-

structed based on diffraction data (2Hc-MoS2, space group P63/mmc (194),

a=b=3.160 Å, c=12.295 Å [41]) in the form of the supercell (4a×4b×4c)

containing 384 atoms. The atoms in the supercell were randomly displaced
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at each iteration with the maximum allowed displacement of 0.4 Å. The

configuration-averaged EXAFS spectra at the Mo K-edge were calculated us-

ing the ab initio self-consistent real-space multiple-scattering (MS) FEFF8.5L

code [32, 42] taking into account multiple-scattering contributions up to

the 5th order. The complex energy-dependent exchange-correlation Hedin-

Lundqvist potential was employed to account for inelastic effects [43]. The

amplitude scaling parameter S2
0 was set to 1.

The experimental and calculated Mo K-edge EXAFS spectra were com-

pared in both the direct (R) and reciprocal (k) space utilizing the Morlet

wavelet transforms [44]. The fitting was done in the k-space range from

2.2 Å−1 to 18.3 Å−1 and the R-space range from 1.1 Å to 6.3 Å. The con-

vergence of each RMC simulation was achieved after 4000 iterations. The

RMC/EA calculations were performed for 32 atomic configurations simul-

taneously. At least three RMC/EA simulations were conducted for each

experimental data set, using different sequences of pseudo-random numbers.

The configuration-averaged EXAFS spectra agree well with the experimental

data at all temperatures supporting the reliability of the obtained structural

models.

Atomic coordinates were used to calculate radial distribution functions

(RDFs) and estimate structural parameters of interest. The means-square

relative displacement factors σ2 for Mo–S and Mo–Mo atom pairs were cal-

culated using the median absolute deviation (MAD) method [45, 46].
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4. Ab initio molecular dynamics

Ab initio molecular dynamics (AIMD) simulations were based on Kohn-

Sham density functional theory (DFT) [47] and were performed in the NVT

ensemble at four different temperatures (300 K, 600 K, 900 K, and 1200 K)

using the CP2K code [48]. The code employs a localized basis set of Gaussian-

type orbital functions for the description of the Kohn–Sham matrix within

the framework of the Gaussian Plane Waves method [49, 50]. We used PBE

exchange-correlation functional [51] with Grimme correction [52].

Preliminary structure DFT calculations with full optimization of geome-

try gave the lattice constants of bulk 2Hc-MoS2 equal to a0 = 3.164 Å and

c0 = 12.199 Å. Orthorhombic supercell 6a0×4a0×2c0 with 576 atoms (192

Mo atoms and 384 S atoms) was used for AIMD calculations. The size of

the supercell was equal to 18.986 Å×21.923 Å×24.398 Å. CSVR (Canonical

Sampling through Velocity Rescaling) thermostat [53] was used in the calcu-

lations. The system was first equilibrated for 15 ps, followed by a production

run of 30 ps. The time step was ∆t = 0.5 fs. A set of at least 4000 atomic

configurations was recorded during the production run and further used for

the calculation of the configuration-averaged EXAFS spectrum by the MD-

EXAFS approach [30, 54]. The AIMD results calculated at different tem-

peratures were used to obtain temperature-dependence of the means-square

relative displacement factors σ2 for required Mo–S and Mo–Mo interatomic

distances.
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5. Results and discussion

The crystallographic structure of 2DLM 2Hc-MoS2 with hexagonal sym-

metry is shown in Figure 1 [55]. Molybdenum atoms have trigonal prismatic

coordination and are covalently bonded to six sulfur ions. The MoS6 units

form two layers per unit cell which are held together along the c-axis by weak

vdW interactions. The interlayer gap is about 3 Å. In Figure 1, the Mo and

S atoms located in the nearest ten coordination shells around the absorb-

ing molybdenum atom (Mo0) are labeled. Note that three shells including

sulfur (two S4 and twelve S7) and molybdenum (six Mo9) atoms belong to

the nearest neighboring layers, therefore, their analysis can provide original

information on the interlayer interactions.

The values of Mo–S and Mo–Mo interatomic distances for the first ten

coordination shells in 2Hc-MoS2 are reported in Table 1. As can be seen, the

atoms (S4, S7, and Mo9) located in the nearest neighboring layers and being

the closest to the absorbing molybdenum (Mo0) belong to its distant coor-

dination shells with large interatomic distances. Nevertheless, these atoms

should contribute to EXAFS spectra as can be estimated from the value of

the mean-free path of the excited 1s(Mo) photoelectron (see, the inset in

Figure 2).

The Mo K-edge EXAFS spectra of 2Hc-MoS2 and their FTs are domi-

nated at all studied temperatures in the range of 10-300 K by a contribution

from the first two coordination shells, which are composed of six sulfur (S2)

and six molybdenum (Mo2) atoms (Figure 2). However, several structural

peaks are well visible in FTs above 3.2 Å up to at least 10 Å. Their small

amplitude compared to that of the first two peaks at 2.0 and 2.9 Å is caused
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by the overlap of shells, thermal disorder, and interference effects between

single-scattering and high-order multiple-scattering contributions in EXAFS

spectra. In particular, the effect of thermal disorder is clearly seen upon

increasing temperature as the EXAFS spectra damping at high-k values or

a reduction of the peak amplitude in FTs. While the reliable analysis of

distant shells is challenging within the conventional methodology, it can be

reliably performed using the reverse Monte Carlo method [40, 56, 57, 58].

Table 1: Values of Mo–S and Mo–Mo interatomic distances for the first ten coordination

shells of molybdenum calculated from the crystallographic structure of 2Hc-MoS2 [55].

Interlayer distances are given in bold. The values of characteristic Einstein frequencies

(ωE) and the effective force constants (κ) obtained from the RMC analysis are also given.

Atom pair Distance (Å) ωE (THz) κ (N/m)

Mo0–S1 2.37 62±3 152±13

Mo0–Mo2 3.16 44±2 152±13

Mo0–S3 3.95 38±2 56±5

Mo0–S4 4.64 26±2 26±5

Mo0–S5 5.06 40±2 65±5

Mo0–Mo6 5.48 34±2 94±5

Mo0–S7 5.62 36±2 51±5

Mo0–Mo8 6.32 34±2 93±6

Mo0–Mo9 6.41 18±2 25±5

Mo0–S10 6.75 37±2 55±5

Examples of the RMC simulations of the Mo K-edge EXAFS spectra for

2Hc-MoS2 at two selected temperatures (10 and 300 K) are shown in Figure

3 in k-space, R-space, and wavelet(k,R)-space. The theory reproduces well
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Figure 2: Temperature-dependent Mo K-edge EXAFS spectra χ(k)k2 and their Fourier

transforms for 2Hc-MoS2. The calculated half of the mean free path of the photoelectron

is shown in the inset and explains the presence of distant coordination shells.
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Figure 3: Results of RMC calculations for the Mo K-edge in 2Hc-MoS2 at 10 K and

300 K. The EXAFS spectra χ(k)k2 and their Fourier transforms are shown in the left

panels. Wavelet transforms of EXAFS spectra are shown in the upper right panel. A

comparison between the calculated Fourier transforms for the bulk and single monolayer

MoS2 is shown in the lower right panel.

the experimental data, allowing for a detailed analysis of thermal disorder

effects within the coordination shells up to 7 Å.

To estimate the contribution of atoms from the nearest neighboring lay-

ers to the total EXAFS spectrum, the Mo K-edge EXAFS spectra of bulk

and single monolayer MoS2 were additionally calculated using the crystal-

lographic structure of 2Hc-MoS2 [55], without considering thermal disorder.

Their FTs are compared in the lower right panel in Figure 3. As one can see,
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the main difference between the two FTs is observed between 4.2 and 6.5 Å,

where the interlayer contributions appear. At the same time, their effect is

rather small and requires a delicate treatment during analysis.

The coordinates of atoms obtained in the RMC simulations were used to

compute the radial distribution functions (RDFs) g(R) and the means-square

relative displacements (MSRDs) σ2 at each temperature (Figure 3). The

temperature dependencies (10-300 K) of the obtained MSRDs σ2(T ) were

further approximated by the correlated Einstein model [59]. As a result, the

characteristic Einstein frequencies ωE and the effective force constants κ were

obtained for all coordination shells and are reported in Table 1 and Figure 4.

The relationship between the two parameters is ωE =
√

κ/µ, where µ is the

reduced mass of an atom pair. The largest value of the Einstein frequency,

ωE = 62 THz, was found for the Mo0–S1 bonds in the first coordination

shell due to strong covalent bonding between the nearest Mo and S atoms.

The effective force constant κ = 152±13 N/m for the Mo0–S1 bonds can be

compared to the one (194 N/m) estimated from the internal Raman E1
2g mode

at 383.4 cm−1 [60] or to the one (138 N/m) determined from the analysis of

dispersion-curves measured by neutron scattering [61]. In the EXAFS study

[28], the effective force constant κ = 204 N/m for the Mo0–S1 bond was

obtained by the conventional EXAFS analysis.

The characteristic Einstein frequency ωE = 44 THz is lower for the Mo0–

Mo2 atom pairs due to the twice larger value of the respective reduced mass

(µ(Mo–O)=24.03 vs µ(Mo–Mo)=47.97). Nevertheless, the values of the effec-

tive force constants κ = 152 N/m are equal for the two atom pairs. This fact

can be explained by the location of each molybdenum atom at the center
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of a trigonal prism composed of six sulfur atoms, while the prisms them-

selves are connected by edges (Figure 1). Thus, while there is no direct

bonding between neighbouring molybdenum atoms, they interact through

the two common sulfur atoms at the prism edge. Note that the value of κ =

137 N/m was found for the Mo0–Mo2 atom pair in [28].

For atom pairs involving distant atoms (S4, S7, and Mo9) from the nearest

neighboring layers, the characteristic Einstein frequencies and the effective

force constants have the lowest values suggesting weak interlayer coupling.

The analysis of MSRD factors (Figure 4) indicates significant differences

in relative vibrations between atoms in the same layer and the nearest neigh-

boring layers. In general, a linear increase in MSRD values for Mo–S and

Mo–Mo atom pairs is expected at higher temperatures due to stronger ther-

mal vibrations [59]. As the separation between two atoms grows, the MSRD

value for the pair of atoms should eventually reach a limiting value equal

to the sum of their mean-squared displacements, owing to a decrease in the

correlation of their motion [62]. Indeed, such behavior was observed in all

coordination shells except the ones located in the nearest neighboring lay-

ers. The MSRD factors for Mo0–S4, Mo0–S7, and Mo0–Mo9 atom pairs are

significantly larger than those for other atom pairs at all temperatures. This

result suggests that a weak vdW coupling between layers in 2Hc-MoS2 leads

to highly anisotropic vibrations of Mo and S atoms, being smaller within

the layers and larger along the c-axis. To summarize, the obtained results

demonstrate the sensitivity of EXAFS spectra to such a weak effect as an

interlayer coupling in 2DLMs.

To support experimental findings and extend the analysis of lattice dy-
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Figure 4: Results of RMC calculations for the Mo K-edge in 2Hc-MoS2. Upper left panel:

the radial distribution functions for Mo–S and Mo–Mo atom pairs at four temperatures

(10 K, 100 K, 200 K, 300 K). Middle left panel: MSRD factors σ2(R) for Mo–S and Mo–

Mo atom pairs as a function of interatomic distance for four temperatures. Upper and

middle right panels: temperature dependence of the MSRD factors σ2(T ) for Mo–S and

Mo–Mo atom pairs. Lower left and right panels: distance dependence of the characteristic

Einstein frequencies ωE and the effective force constants κ for Mo–S and Mo–Mo atom
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namics in 2Hc-MoS2 to even higher temperatures, ab initio molecular dynam-

ics (AIMD) simulations were performed. The Mo K-edge EXAFS spectrum

at 300 K was used to validate the AIMD theory. A comparison between the

experimental and AIMD-calculated EXAFS spectra is shown in Figure 5 and

suggests good agreement both in k and R spaces. The AIMD simulations

reproduce well the structure and lattice dynamics in 2Hc-MoS2 at least up to

7 Å. Note also that the range above the second shell is strongly dominated by

the multiple-scattering contributions (blue curves in Figure 5) which, thus,

should not be ignored and must be taken into account for accurate analysis.

Being inspired by the results at 300 K, the AIMD simulations were also

performed at higher temperatures of 600 K, 900 K, and 1200 K. The MSRD

factors for Mo–S and Mo–Mo atom pairs were calculated from atomic co-

ordinates after system equilibration and are shown in Figure 6 for different

coordination shells at four temperatures. Note that the MSRD factors for

Mo–S atom pairs are slightly larger than those for Mo–Mo atom pairs when

close interatomic distances are considered. The results obtained allow us

to draw several conclusions. Firstly, upon temperature growth, the absolute

values of the MSRD factors increase due to the larger amplitude of atom ther-

mal vibrations. Secondly, at each temperature, the MSRD factors increase

up to about 4 Å due to a decrease in the correlation of atomic motion, i.e.

due to a reduction of interaction between distant atoms. At the same time,

the MSRD values of Mo–S and Mo–Mo atom pairs remain almost unchanged

for more distant coordination shells (beyond 4 Å) where the correlation is

absent, and the MSRD factors equal to a sum of mean-squared displacements

for two atoms. Thirdly, there is a clear difference between the MSRD val-
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Figure 5: Comparison between the experimental and AIMD calculated Mo K-edge EXAFS

spectra χ(k)k2 and their Fourier transforms for 2Hc-MoS2. The single-scattering and

multiple-scattering contributions to the total EXAFS spectrum are shown in the lower

panels.
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Figure 6: Temperature and interatomic distance dependences of the MSRD factors σ2(T )

for Mo–S (circles) and Mo–Mo (squares) atom pairs obtained from AIMD simulations for

2Hc-MoS2. The MSRD factors for interlayer interactions are indicated by dashed ellipses.

ues for atom pairs within the layer and including atoms from the nearest

neighboring layers indicated in Figure 6 by dashed ellipses. The origin of

this difference is weak atomic interactions across the vdW gap leading to the

anisotropic atomic motion of atoms within the layer and in the orthogonal

direction along the c-axis. Note that strong anisotropy of atom thermal vi-

brations has been also observed previously by single-crystal X-ray diffraction

in 2H- and 3R-MoS2 polytype phases [55].
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6. Conclusions

Interlayer and intralayer coupling in two-dimensional layered 2Hc-MoS2

was studied by the Mo K-edge X-ray absorption spectroscopy and ab initio

molecular dynamics (AIMD) simulations. The Mo K-edge EXAFS spectra

were measured in the temperature range of 10-300 K, and their analysis us-

ing the reverse Monte Carlo (RMC) simulations allowed us to distinguish

intralayer and interlayer interactions between absorbing Mo and neighboring

S/Mo atoms located within the same or nearby layers, respectively. Temper-

ature dependence of the mean-square relative displacement factors σ2 was

determined for the nearest ten coordination shells around molybdenum. The

strength of the Mo–S and Mo–Mo interatomic interactions was evaluated in

terms of the characteristic Einstein frequencies ωE and the effective force

constants κ.

The RMC results obtained at low temperatures were complemented by

high-temperature AIMD simulations. The experimental Mo K-edge EXAFS

spectrum measured at 300 K was employed to validate the results of the

AIMD simulations, which were used to extend the studied temperature range

up to 1200 K. Good agreement between the experimental and AIMD calcu-

lated EXAFS spectra at 300 K as well as between the mean-square relative

displacement factors σ2 for Mo–S and Mo–Mo atom pairs obtained by RMC

and AIMD methods proves the reliability of the AIMD simulations.

The AIMD results demonstrate good sensitivity to the temperature de-

pendence of the interatomic interactions and provide evidence of the reduc-

tion of correlation in motion between distant atoms. Moreover, both RMC

and AIMD results suggest strongly anisotropic vibrational dynamics of atoms
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within the plane of the layers and in the orthogonal direction along the c-axis.

The demonstrated methodology opens a new pathway for the investigation

of interatomic interactions in layered materials.
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