Investigations of a BiCMOS Pixel Sensor

A close look on its early breakdown

Physikalisches Institut, Universität Heidelberg

Benjamin Weinläder

DPG Frühjahrstagung 2023 - Dresden

High Voltage – Monolithic Active Pixel Sensors

- detection and readout on one chip
 in-pixel electronics
- ∽ high voltage:
 - **b** fast charge detection via drift
 - **b** large depletion area
- commercially available processes

I. Peric, P. Fischer et al.: NIM A 582 (2007) 87

More Information in Section: T147, Thursday 17:30-19:00

BiCMOS Process

- combines bipolar (HBT) and MOS transistors
 - **b** allows to benefit from CMOS logic
- ∽ advantages of bipolar transistors:
 - **b** fast switching times
 - **b** large current gain

Idea:

- → build HV-MAPS in a BiCMOS process
 → use single HBT to boost the performance of the in-pixel amplifier
- \rightarrow achieve very good time resolution

Existing Projects

University of Geneva:

- ◆ general R&D chip: G. Iacobucci et al., doi: 10.1088/1748-0221/17/02/P02019
 - **b** hexagonal pixels with $65 \mu m$ side
 - **`** time resolution of $\sigma_t \approx 80 \ ps \ (I_{preamp} = 20 \mu A)$
- ∽ ASIC for the FASER experiment:

S. Gonzalez-Sevilla, doi: 10.1088/1748-0221/18/02/C02002

- **`o** first test looking good
- **o** no results for the time resolution published yet

BeBiPix

- Small test chip produced in the BiCMOS Process SG13G2 by IHP
- ✓ 2 active 3 × 3 pixel matrices, characterised in simulations
- ✓ focusing on a small pixel layout with in-pixel amplifier
- 🐱 fully analog read-out

BeBiPix

- Small test chip produced in the BiCMOS Process SG13G2 by IHP
- ✓ 2 active 3 × 3 pixel matrices, characterised in simulations
- ✓ focusing on a small pixel layout with in-pixel amplifier
- 🐱 fully analog read-out

Small Pixel Layout

• implant size $26 \times 26 \ \mu m^2$ • pixel size $41 \times 41 \ \mu m^2$

Simulation results:

` input signal corresponding $\approx 2800 \ e^{-1}$

Amplitude	$149.8 \pm 3.1 mV$
Rise Time	741 ± 340 ps
SNR	27 ± 3.9
ToA Jitter	481 ± 33 ps

Problem 1: early breakdown

- expected $BDV \approx 90 V$ from TCad simulation
- ▶ measured $BDV \approx 10 V$

Problem 2: poorly functioning amplifier feedback

• only slow and large input signals (from red laser) are visible

Investigation of the Breakdown

∽ dependency on vdd-voltage (vdda floating)

Investigation of Breakdown

Light Emission Test (LET)

∽ pn-junctions at avalanche breakdown emits light

- **\bigcirc** Intra-band transitions \rightarrow mostly Bremsstrahlung
- **`** Inter-band transitions \rightarrow e-h pair recombination
- light is emitted from localized spots, with highest electrical field
 increasing current results in an increasing number of spots

→ use CCD camera in light-tight box to capture emission
→ light spots indicate position of the breakdown

- exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- LED is used to illuminate the sensor

- exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- LED is used to illuminate the sensor
- **b** 10min exposer

- exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- LED is used to illuminate the sensor
- **b** 10min exposer

- exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- LED is used to illuminate the sensor
- **b** 10min exposer

- exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- **b** dim LED
- **b** 10min exposer

- exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- **v** without LED
- **b** 30min exposure

- exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- **b** overlay layout

HV = 10.18V, $I_{HV} = 300 \mu A$

- **b** exposure of a part of the BeBiPix
- **b** sensor breakdown: $BDV \approx 10.1 V$
- **b** overlay layout

Early Breakdown

Most possible reason:

- ▶ p-Block layer was forgotten in layout
- ∽ manufacturer places p-doping by default

high doping gradients

results in high electric field

Summary

combination of a BiCMOS Process with HV-MAPS is a promising concept
 simulation showed good results for the timing

∽ BeBiPix has still several problems:

b early breakdown

b poorly functioning amplifier-feedback: only slow signals visible

∽ next steps:

b use TCT-setup to investigate Signal response further

Back up

Hybrid vs HV-MAPS

Marco-Hernandez, doi:10.3390/instruments4040036

Simulation results ▶ Transient simulation with noise **Output Signal** — Vout (Iteration=2) — Vout (Iteration=4) [______] 400 [______] 375 Voltage L 320 322

Time [ns]

input signal: corresponding to a MIP ~ Parameter: \mathbf{V} **b** $Q_{sig} \approx 0.45 fC \approx 2800 e^{-1}$ **b** $t_{rise} = 10 ps, t_{fall} = 1 ns$

Transient Simulation – influence of noise

