Diffraction at swiss spallation source SINQ

Vladimir Pomjakushin

Laboratory for Neutron Scattering, Paul Scherrer Institute

Paul Scherrer Institute (West)

SINQ hall

The spallation neutron source SINQ is a continuous source - the first of its kind in the world - with a **flux of about 10¹⁴ n/cm²/s**. Beside thermal neutrons, a cold moderator of liquid deuterium (cold source) slows neutrons down and shifts their spectrum to lower energies.

30 - 35 MeV/useful neutron (Hg 1.3 GeV protons)

Zuoz 2005

Kurt Clausen, 15.8.2005

SINQ hall

Elephant is: Shielding of the direct beam also from fast neutrons for diffraction instruments

EIGER Triple-axis spectrometer Thermal neutrons Contact: Severian Gyasaliya magnetic workShop sevenan.gyasaliya@psi.ch CMS 14

RITA-II Triple-axis spectrometer Cold neutrons Contact: Christof Niedermayer, christof.niedermayer@psi.ch

lukas.keller@psi.ch

NARZISS Polarized neutron reflectometer Contact: Michael Schneider, michael.schneider@psi.ch

ORION Two-axis diffractometer Contact: Cecile Marcelot, cecile.marcelot@psi.ch

TASP Triple-axis spectrometer Cold polarized neutrons Contact: Andrey Zheludev, zheludev@ethz.ch

Cold neutron guide hall

Diffraction instruments at swiss spallation source SINQ

Diffraction instruments at swiss spallation source SINQ

- HRPT <u>High Resolution Powder</u>
 Diffractometer for <u>Thermal Neutrons</u>,
 λ=0.94 2.96 Å
- DMC High Intensity Powder Diffractometer for Cold Neutrons, λ =2.35 - 6 Å
- TriCS Single crystal diffractometer, λ=1.18, 2.3 Å

Diffraction instruments at swiss spallation source SINQ

- HRPT <u>High Resolution Powder</u>
 Diffractometer for <u>Thermal Neutrons</u>,
 λ=0.94 2.96 Å
- DMC High Intensity Powder Diffractometer for Cold Neutrons, λ =2.35 - 6 Å
- TriCS Single crystal diffractometer, λ=1.18, 2.3 Å
- TASP (triple axes) with MUPAD for polarised ND

HRPT areal

Cold neutron guide hall. DMC diffractometer

magnetic worksł CMS'14

HRPT - <u>High Resolution Powder</u> Diffractometer for <u>Thermal Neutrons</u>. linear detector with 1600 channelss, 0.1°

Responsible: Vladimir Pomjakushin, Denis Sheptyakov

HRPT RESOLUTION FUNCTIONS

DMC - cold neutron powder diffractometer linear detector with 400 channels, 0.2°

Responsible: Lukas Keller, Matthias Frontzek

DMC: experimental resolution functions Ad/d (Q,))

12

Neutron flux from the D₂O moderator at HRPT/NEUTRA (white beam)

DMC flux

BQ36 / 23.07.1997

SINQ-NL12_tof.xls

Diagramm4

HRPT - <u>High Resolution Powder</u> Diffractometer for <u>Thermal Neutrons</u>. linear detector with 1600 channelss, 0.1°

Responsible: Vladimir Pomjakushin, Denis Sheptyakov

HRPT RESOLUTION FUNCTIONS

DMC - cold neutron powder diffractometer linear detector with 400 channels, 0.2°

Responsible: Lukas Keller, Matthias Frontzek

DMC: experimental resolution functions Ad/d (Q,))

16

0.016

HRPT - <u>H</u>igh <u>R</u>esolution <u>P</u>owder Diffractometer for <u>T</u>hermal Neutrons at SINQ

HRPT RESOLUTION FUNCTIONS

DMC - cold neutron powder diffractometer

DMC: experimental resolution functions $\Delta d/d$ (Q,)

HRPT RESOLUTION FUNCTIONS

m

cf. resolution/q-range

HRPT I.9Å

magnetic workshop CMS'14

Complementarity 1.9Å HRPT and 4.5Å DMC

Single crystal diffractometer TriCS at SINQ

Single crystal diffractometer at SINQ

Some specific features

Samples, T, P, H and other equipment

- standard sample container: 6-10 mm dia x 50 mm (<4cm³)
- due to low background small samples can be measured (30 mm³)
- zero matrix high pressure cells:
 - clamp cells for 9 and 15 kbar
 - Paris Edinburgh cell 100 kbar
- standard LNS sample environment:
 - Temperature = 50 mK 1800 K,
 - Magnetic field H = 4 T (vertical)
 - Automatic He, N₂ refilling systems
- Sample changers 4-8 samples, T=1.5-300 K

- Eight samples mounted on a caroussel-type changer, few seconds to bring the next one into the measurement position;

- Independent sample rotation mechanism – for reducing the preferred orientation aberrations.

- Eight samples mounted on a caroussel-type changer, few seconds to bring the next one into the measurement position;

- Independent sample rotation mechanism – for reducing the preferred orientation aberrations.

Fully loaded with 8 samples, the sample changer is ready to be installed in-place on the HRPT sample table.

- Eight samples mounted on a caroussel-type changer, few seconds to bring the next one into the measurement position;

- Independent sample rotation mechanism – for reducing the preferred orientation aberrations.

Fully loaded with 8 samples, the sample changer is ready to be installed in-place on the HRPT sample table.

- Eight samples mounted on a caroussel-type changer, few seconds to b position

- Independer preferred ori

Fully loaded with 8 samples

User Experiment 20061119 "Structure of leached Raney Ni alloys" (Nov. 2007): ~80 samples measured in 4 beam days: position; icing the

20 samples/day!

HRPT sample table.

A device for routine powder diffraction measurements at temperatures between 1.5K -300K.

- All samples have the same temperature, i.e. time for temperature change is saved;
- Four samples mounted on a caroussel-type changer, that is a special inset for an orange cryostat

HRPT Detector

- ³He (3.6 bar) + CF₄ (1.1 bar), effective detection length 3.5 cm, 15 cm hight
- Volume 100L, Voltage -6.7kV
- Efficiency 80% @ 1.5 Å
- 1600 wires with angular separation 0.1° (2.6 mm), 1500 mm to sample

Detector chamber. 1600 wires

1600 wires with angular separation 0.1° (2.6mm)

Oscillating radial collimator to avoid scattering from sample environment.

radial collimator

HRPT radial collimators

Radial collimator with the shielding.

There are two radial collimators with 14mm and 28mm full width full maximum triangular transmission function.

Thank you